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Abstract: We demonstrate photon Bose-Einstein condensation (photon-BEC) at a broad
temperature range that is valid also in the long 1D fiber cavity limit. It is done with an erbium-
ytterbium co-doped fiber (EYDF) cavity by overcoming the challenging requirement of sublinear
light dispersion for BEC in 1D using a chirped-gratings Fabry-Perot. We experimentally show
with a square-root mode-dispersion, a quadratic temperature dependence of the critical power for
condensation (compared to a linear dependence in finite regular fiber-cavities) between 90 K and
382 K, as the theory predicts.
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1. Introduction

Bose-Einstein Condensation (BEC) was predicted in 1924-5, but it took 70 years to experimentally
observe it with atomic bosons at ultra-low temperatures [1,2]. More recently it was observed with
non-atomic bosons such as photons [3,4], exciton-polaritons and magnons [5–8]. Photon-BEC has
been observed so far only in two systems at close to room temperatures but with limitations: in a
two-dimensional (2D) dye-filled microcavity [3] and in a one-dimensional (1D) erbium-ytterbium
co-doped fiber cavity [4] . BEC is characterized by a transition to a macroscopic population of
bosons at the ground state at a nonzero temperature. It generally depends on the dimension, the
dispersion relation that for light is commonly linear (exponent of 1), and the sort of a possible
potential trap [9]. A dispersion with an exponent of 1 is at the boundary for BEC in one-dimension
(1D) without a potential trap that requires exponents smaller than 1 [4,9]. It makes the integral
for the bosonic particles converge (see below Eq. (4) and the discussion there) meaning that all
states above the ground state are filled at some stage (critical temperature or critical particle
number) and any additional pumping (or decrease of the temperature) adds particles to the ground
state. In the fiber photon-BEC case the condensation observation was possible only due to a
finite system size [4,10]. In the dye-filled microcavity [3,11–13]. BEC was observed with the
transverse cavity modes that provided a two-dimensional (2D) system with a quadratic dispersion
(exponent of 2) for the transversal wave-vector components. A dispersion exponent of 2 is again
on the boundary for BEC in 2D and it therefore needed a potential trap that was provided by the
broad cavity mirrors [3,11–13]. Thermalization and condensation were recently observed also in
an electrically pumped semiconducor microresonator [14].

In the present work, we overcome a crucial requirement for photon-condensation in 1D fibers
without a potential-trap by using a special sublinear mode-dispersion technique that makes the
condensation valid also in the large system limit, without the need of a finite cavity dependent
condensation used in Ref. 4. The dispersion near a cutoff frequency (ω − ω0) = a(k − k0)

η

requires in 1D a sublinear positive exponent (0<η<1) [4,5], which we achieved by a chirped
fiber Bragg gratings Fabry-Perot (FP) [15]. For a linear chirp, the case of our experiments, the
mode-dispersion has a square-root dependence on the FP mode number. The FP was placed in a
fiber cavity with erbium-ytterbium co-doped double-clad fiber (EYDF) that provided the BEC
requirements for photon thermalization [4,16], and together with the photon number conservation
provided by gain [3,4,11], and a cutoff frequency that determined the ground state [4], we
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obtained BEC. We studied such chirped fiber Bragg gratings FP in another paper [15], where
we gave analytical calculation and experimental demonstration of sublinear mode-dispersion,
and a density of mode states (DOS) with a positive nonzero exponent near a cutoff frequency, as
required for BEC. We also demonstrate here the temperature dependence of the condensation
threshold (critical) power that is found to be quadratic in a broad temperature range between 90 K
and 382 K for a linear chirped gratings case that follows the theoretical prediction. This quadratic
temperature dependence that results from the square-root mode-dispersion adds a support to the
BEC observation. For comparison, we also show results of a linear temperature dependence
of the condensation threshold power in a regular fiber cavity without the mode-dispersion
modification of the chirped fiber Bragg gratings FP that relies on the finite size property. It is
similar to the condensation that we obtained in Ref. [4]. We also mention former works on
distinguishing between photon BEC and laser oscillation and other condensation phenomena,
including classical (Rayleigh-Jeans) condensation of waves in lasers, nonlinear crystals and
multimode fibers [17–25].

2. BEC in long cavities

As mentioned above BEC in 1D requires a sublinear dispersion near a cutoff frequency that gives
there a nonzero DOS exponent. Therefore, before analyzing the condensation formation in our
case, we give a short description on the experimental way to obtain such dispersion. We recently
reported on that in the paper of Ref. [15].

2.1. Sublinear mode-dispersion by chirped gratings Fabry-Perot

The needed sublinear dispersion can be achieved by a FP with two chirped fiber Bragg gratings
with opposite chirp directions. The Bragg wavelength changes along the grating according to:
z1 = C−1(λ0 − λ)

α and the close wavelength locations are at λ0. C is the chirp strength that can
be positive or negative according to the chirp direction. The chirp nonlinearity is given by the
exponent α. The C dimension is (meter)α−1. In our experiment we had a linear chirp with α = 1
and a dimensionless chirp strength C = 2 × 10−6. The high wavelength chirp edge is at λ0 or
ω0 = 2πc/(nλ0) that with the wave-shaper serve as the cutoff. The upper wavelength of the
wave-shaper transmission band was prepared to be close and slightly below the wavelength of the
grating’s chirp edge. Therefore the effective distance between the gratings was here l0 = 2.8 mm,
higher than the value in Ref. [15] with l0 = 0.3 mm, but still small to get the needed DOS for
BEC. The FP effective length is leff = 2z1 + l0 = 2C−1(λ0 − λ)

α + l0, where l0 is the spacing
between the two chirped fiber Bragg gratings. We mostly want to have small l0. We give here
only the results [15], The density of light-mode states (DOS) of the chirped fiber Bragg gratings
FP for (ω − ω0) /ω0<<1 (valid in our case in the whole band):

ρ (ω) ≈ b(ω − ω0)
α + ρ0 , (1)

where ρ0 = l0/(πc/n) and b = 4C−1(2πc/n)α−1/ω0
2α.

For FP gratings with a linear chirp (α = 1): ρ (ω) ≈ b(ω − ω0) + ρ0 , where b = 4C−1/ω0
2.

Therefore, the DOS ρ (ω) increases with ω and the spacing between modes ∆ω decreases until
they both become constant since ((ω − ω0)/ω)

α → 1 for ω>>ω0. The mode-dispersion near
the cutoff for the linear chirp case (α = 1):

(ω − ω0) = [−ρ0 + (ρ
2
0 + 2 b m)1/2]/b

(λ0 − λ) ≈ [λ0
2/(2πc/n)] [−ρ0 + (ρ

2
0 + 2 b m)1/2]/b

(2)

where m = 0, 1, 2 . . . is the FP mode number. With l0 ≈ 0 (α = 1) we have a square-root
mode-dispersion [15]:

(ω − ω0) = (2/b)1/2 m1/2. (3)
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The general α case than can be mapped to a nonlinear dispersion (ω − ω0) = a (k − k0)
η that

gives for the FP modes DOS, ρ(ε) ∝ 1/(dω/dk) ∝ ε(1/η)−1, where η = 1/(α+1) or α = (1/η)−1.
The linear case (α = 1) corresponds to a square-root dispersion (ω−ω0) = a (k − k0)

1/2 (η = 1/2).

2.2. Photon-BEC temperature dependence

We first mention discussions on which ensemble, grand-canonical, canonical or microcanonical,
should be used for BEC [26]. Most analyses were done with a grand-canonical ensemble where the
system is in a thermal and chemical equilibrium with a reservoir, exchanging energy and particles,
compared to a fix particle number in a canonical ensemble, as is the case in many experiments. In
our case of photon BEC only the average power or the average photon number, and not the number
itself, are kept constant by the pumping [3,4]. The average occupations are the same in the abovè
ensembles, but the fluctuations at the condensation state in the grand-canonical ensemble are large,
on the order of the particle number N [26]. In the grand-canonical ensemble the average number
of photon particles is N =

∑︁
ωi≥ω0

1/{exp β[ℏ(ωi − ω0) − µ] − 1}, where ωi are the states (modes),

where β = 1/kBT , kB is the Boltzmann constant, T is temperature, ℏ = h/2π is the reduced Planck
constant and µ is the chemical potential. The summation can be changed to an integral with a

continuous state variable and a suitable DOS: N =
∞∫

ω0

ρ(ω)dω/{exp β[ℏ(ωi − ω0) − µ] − 1}.

The critical photon number for condensation in the cavity is given by [4]

Nc =

∞∫
ω0

sρ(ω)dω
eβℏ(ω−ω0) − 1

≈

∞∫
ω0

sb(ω − ω0)
αdω

eβℏ(ω−ω0) − 1
+

∞∫
ω1

sρ0dω
eβℏ(ω−ω0) − 1

, = (bs/ℏα+1) Γ(α + 1) ζ(α + 1) (kBT)α+1 + s x ln x,

(4)

where ω1 = ω0 + πc/nl0 is the next to the cutoff mode, x = 2nl0kBT/hc and Γ(z) and ζ(z) are
the gamma and the Riemann zeta functions. The general BE distribution is proportional to
1/(eβ[ℏ(ω−ω0)−µ] − 1). At BEC µ = 0. BEC is possible when the integral for NC in Eq. (4), that
starts from the cutoff ω0, converges. Then all states above the ground state are filled at a critical
temperature (or a critical particle number) defined in Eq. (4) and any additional pumping (or
decrease of the temperature) adds particles to the ground state. It requires that the exponent of
ρ(ε) is positive: (1/η) − 1>0 or η <1 (η >0). (More generally for a dimension d: Nc ∝ (kBT)d/η ,
and the condition for BEC is (d/η) − 1>0, or η <d (η >0). For the constant part of the DOS, ρ0,
convergence is possible due to finite cavity length consideration and starting the integral from the
second mode ω1, as discussed in Ref. [4]. We also note that due to the FP transmission modes
with a relatively large width, related to a low FP finesse for the continuous wavelengths of the
chirped fiber Bragg gratings, we have in Eq. (4) an additional multiplying parameter s, that we
discuss and quantify below. It reflects the partial dilution effect of the FP modes that each still
contains many long cavity modes (except the BEC mode, as we note below). The convergence of
the first integral in Eq. (4) is possible when the exponent in ρ(ω) ∝ (ω − ω0)

α is positive (α>0),
that is met in the linear chirped fiber Bragg gratings case where α = 1. Starting the integral right
at the frequency cutoff ω0 and having convergence with such DOS makes the BEC valid in the
large system limit where the cavity length l → ∞ without the need of a finite cavity consideration
[4]. The second integral in Eq. (4) with ρ0 converges only for a finite system size [4,10], but as
we see below, it is anyhow small for l0 ≈ 0 at higher than 100 K, compared to the first integral
[15]. The calculation of this second term is similar to what we had for a finite system size with
a linear dispersion [4], that gave a logarithmic dependence at the origin (ε = 0) but converges
when the lower bound is taken from the second mode and not from zero, as it should be for Nc.
However, as we noted above, this second term is smaller than the quadratic one. For the linear
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chirp case (α = 1) Eq. (4) gives:

Nc ≈ (bsπ2/6ℏ2) (kBT)2+s x ln x ≈ 0.039 s T2+ s(200 l0T) ln (200 l0T) ≈ 0.039 s T2+ 1000 l0 s T
(5)

where we used Γ(2) = 1 and ζ(2) = π2/6. Here the coefficients of T2 and T have units of
1/K2 and 1/(K m) respectively. The second term is negligible when l0<<3.9 × 10−5 T . For
T=300 K it gives l0<<11.7 mm that can be implemented in the experiment. For l0 = 2.8 mm,
T>> 1000l0/0.039 ≈ 72K . We used an average value for ln (200 l0T) ≈ 5. Therefore, in our
experiment the T2 term dominates above 100 K. We stress that then the BEC results is valid
in the in the large cavity limit, although the number of FP modes in the chirped fiber Bragg
gratings band of 32.5 nm (the maximum transmission range of the wave-shaper), was relatively
small [15]: m ∼ 500. To get a feeling of the critical power values, we have for T = 300K:
Nc ≈ 0.433 s × 104 photons. Converting N to power is done by P = Nℏω/trt where trt = l/(c/n)
is the whole cavity photon round-trip time. For the calculation we take the experimental length
of l ≈ 27m and 2l0 ≈ 2 × 2.8 mm. Then we have N0 = N − Nc ≈ N − 0.039 s T2 that gives for
the condensation and critical powers, p0 and Pc = P(p0 = 0), respectively:

p0 = P − Pc = P − ã T2, Pc = ã T2 (6)

where ã = 0.039 sℏω0 c/nl ≈ 1.23 × 10−5µW/K2 with s = 321. It gives, for example
Pc(T = 300K) ≈ 1 .1µW.

3. Experiment

3.1. System

The experimental system is described in Fig. 1. It is similar to the one in Ref. [4] besides the
cutoff element and a Fabry-Perot that provided sublinear mode-dispersion (η = 0.5). The FP
that is placed in a long ring cavity l = 27 m with the square-root mode-dispersion dilutes the
long cavity modes and determines the BEC occurrence as discussed below. The (9+ 1) m long
double-clad EYDF sections give photon gain that keeps the photon number almost constant and
thermalization.

Fig. 1. The fiber cavity schematic for the photon BEC experiment: It contains the chirped
fiber Bragg gratings FP, two double-clad EYDF sections for gain and thermalization and
a wave-shaper that determines the spectral range including the cutoff wavelength. The
counter-propagating cladding pumping was used to obtain a more uniform pump level along
the entire length of the active fiber.

In the experiment, the EYDF gave the photon thermalization [4,16], and the wave-shaper
(1000S of Finisar based on angular dispersion and liquid crystal on a Silicon array to form
the required spectral filter) with the chirped grating FP provided the cutoff wavelength at
λ0 ≈ 1560.5 nm (slightly lower than the wavelength of the grating’s chirp edge), that are
requirements for BEC. The modes of the FP filter and select the dense ring cavity modes that have
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a spacing of ∆νcavity = c/nl. A use of the wave-shaper has advantages compared to the cutoff
filter [4], mainly since its cutoff width was less than 1 nm, compared to 4 nm in the filter case.
Nevertheless, the wave-shaper also added a low wavelength bound at 1528 nm, besides the high
wavelength at 1560.7 nm that served as the cutoff, such that the transmission band was 32.5 nm.
The extinction ratio was 50 dB, similar to the filter case. Nevertheless, the loss was higher, about
3 dB and it restricted the maximum upper wavelength cutoff at 1560.7 nm. The higher losses that
sum to (70-90)% and gave a relatively long photon cavity lifetime of tc ∼ (1 − 2) × 10−7s due to
the long size of the cavity (27 m) still let us be in the low loss-rate “quantum” regime [12]. We
used linear gratings for the Fabry-Perot (α = 1), with a short spacing of l0 = 2.8 mm between
them. For the temperature variation and its measurement, we used the setup and the methods that
were described in our former work [4].

3.2. Measurements

We show the experimental results using a Fabry-Perot with linearly chirped gratings (α = 1) using
the system shown in Fig. 1. In Fig. 2 we can see spectra for different pumping levels that give
intracavity powers below and above the condensation critical power. The resolution of the spectra
in Fig. 2 was 20 pm with averaging to increase the range of the signal level. The condensation
that was at ∼1560.7 nm occurred at a single long cavity (fiber-ring-cavity) mode (in many
experiments, but not always, maybe due to noise). This can be seen in the inset of Fig. 2 done
with a pumping slightly above threshold and measured with the spectrum analyzer with a high
resolution of 10 MHz or 0.08 pm, while the long cavity (27 m) mode separation was ∼7.7 MHz.
The Bose-Einstein (BE) spectra that fit the corresponding temperatures (300 K in Fig. 2) reflect
the photon thermalization effect [4,16]. We stress that for additional pumping beyond threshold
where µ = 0 the additional power goes to the mode near the cutoff. Any deviation can be due to
several reasons. It can hint on a photon quasi-equilibrium or nonequilibrium near and above
condensation that can be a very interesting phenomenon [5,6], and deserves a special work and
paper. We also note that the experimental spectra without the restricting wave-shaper and the
chirped gratings showed a larger range that started from 1460 nm below and above condensation
followed BE distribution at 300 K for all pumping values with an almost straight line with a slope
that fits the temperature (as was observed in Refs. [4,16]) with a range of 100-200 nm) until
the effect of the cutoff and condensation caused a deviation from it. Another point is the large
fluctuations above condensation [26]. There is also an effect of the low resolution spectra. The
measured spectra near condensation give an average of narrow width signals and close to zero
background that can be seen in the inset of Fig. 2. It causes a lower power in the measurement of
the spectra in Fig. 2 except for the condensation zone at or near the cutoff. As we discussed earlier
[4,16], the photon thermalization depends on interactions with the erbium atoms in the fiber core.
In our system with relatively long active fibers and high doping concentration, there are many
photon-erbium interaction cycles that are needed for photon thermalization [3,4,12,16].We can
also see in Fig. 2 the FP modes with the nonuniform mode spacing determined by the chirped
fiber Bragg gratings FP.

Figure 3 shows the critical powers for condensation for the nonuniform mode comb with a
linear chirp (opposite chirp directions) and for a uniform mode comb FP (chirped gratings in the
same direction) cases with a quadratic and linear fits that follow the theory. The experiment was
done in a broad temperature range between 90 K and 382 K, using the measurement, cooling and
heating apparatus and methods described in our former work [4]. We note that the measurement
of the condensation mode power p0 obtained with an integration of the spectra measured with
YOKOGAWA AQ6370D spectrum analyzer, here is more definitive than what we had in the
fiber cavity experiment in Ref. [4] since the modes defined by the FP are distinctive and can
be observed by the spectrum analyzer. As the pumping increases the condensation power p0
becomes larger than the former chirped gratings FP mode by more than 27 dB. We also stress that
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Fig. 2. The condensation experimental results. Showing spectra in arbitrary units for
three pumping levels (overall powers), one below BEC threshold and two above it. Above
threshold, most power goes to the condensation mode. The almost straight dark green dashed
line gives a fit of the theoretical BE distribution for 300 K below the condensation threshold
with a chemical potential fit of µ = −0.2/β ≈ −0.0052eV , complying with the thermal
equilibrium of the photons in the cavity. For strong pumping the condensation power p0
becomes larger than the former mode by more than 27 dB. We can see the FP modes with
the nonuniform spacing determined by the chirped fiber Bragg gratings FP with α = 1, and
the condensation near the cutoff. For pumping at and above threshold µ = 0. For further
pumping above threshold µ = 0 and only the condensation mode grows. We note that the
experimental spectra without the wave-shaper and the chirped gratings had a larger range
that started from 1460 nm followed BE distribution at 300 K for all pumping values with an
almost straight line, as was observed in Refs. [4,16], until the effect of the cutoff caused a
deviation from it. Here the spectra were measured by an optical spectrum analyzer with a
resolution of 20 pm and averaging to obtain large dynamic range. Inset: Zoom at the lower
(condensation) mode with a high resolution of 10 MHZ (0.08pm) with a pumping that is
slightly above threshold. It gives for the strong line a maximum width of ∆ν<10MHz or
∆λ<0.08pm that means very high coherence length of lC>300 m. This line is higher by
∼40 dB from the low weak secondary or noisy mode spikes.

the condensation accumulation is at a very narrow spectral width of a single long cavity mode,
as can be seen in the inset of Fig. 2, measured by a spectrum analyzer with high resolution of
10 MHz (0.08 pm) (AP2041B of APEX Technologies that is based on interferometric method and
includes a tunable laser as a local oscillator with a linewidth of 500 kHz) in many experiments,
but not always, maybe due to noise.

The experimental measurements for the nonuniform comb shown in Fig. 3 gave PC =

[(1.23 ± 0.16) × 10−5T2 + 0.22 ± 0.08 ] µW, that with the deduction of the constant value
of ≈0.22µW fits the theoretical values for the critical powers with s = 321. We think that
this small constant power of 0.22µW results from the low temperature contribution of the
second term in Eq. (5), and also from polarization reasons. As said in the theoretical part
the factor s results from the relatively low FP finesse of ∼4, where each of its modes still
contains many long cavity modes. Nevertheless, at the condensation wavelength near the cutoff
wavelength we found only a single mode, as seen in the inset of Fig. 2, (as said above, in many
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Fig. 3. The condensation critical power dependence on temperature. For the linear chirped
fiber Bragg gratings case (α = 1) that gives a square-root mode-dispersion, the experimental
results gave a quadratic dependence on T (the blue points and line), Pc = ãexp T2 with
ãexp ≈ 1.23×10−5µW/K2 that fits the theory. For comparison, we also show the experimental
results placing in the cavity a FP with a uniform comb (the chirp had the same direction in
the two gratings, thus the FP separation was independent on wavelength). In this case we
obtained a linear T dependence (the red points and line), as shown in the figure. The results
follow the theoretical predictions. It is similar to the linear dispersion case (Ref. 4) where
BEC is based on a finite cavity effect. For the temperature variation we used, as done in Ref.
4, a heating chamber with a controlled temperature that was measured by a thermocouple
and a temperature dependent resistor. For cooling, we used a cryostat system with liquid
nitrogen in a dry dewar where the EYDF was placed in different heights to have various
temperatures.

experiments, but not always), within the spectrum analyzer resolution of 10 MHz (0.08 pm).
For example, the value Pc(T = 300K) ≈ 1.3 − 0.22 ≈ 1.08 µW fits the theoretical calculation
of Pc = ã T2 = 1.23 × 10−5 × 3002 = 1.1 µW. Also the experimental quadratic T dependence
coefficient in Fig. 3 is ãexp ≈ (1.23 ± 0.16) × 10−5µW/K2, that excellently agrees with the
theoretical value of ã ≈ 0.383 s × 10−7µW/K2 = 1.23 × 10−5µW/K2, for a linear chirp with the
same s = 321.

For comparison, we also made measurements for a FP that we fabricated with two gratings that
have the same chirp direction that was placed it in the long EYDF cavity. Such FP gave the same
“mirror” separation of lFP ≈ 2.13 mm for all wavelengths and therefore generated a regular uniform
mode comb separation and a linear dispersion at a large band of∼45 nm. (We note that the gratings
here partially overlapped and the spacing between the same wavelength locations in the two
gratings that gives the FP width was lFP ≈ 2.13 mm for all wavelengths.) Then b = 0 and we have
a constant DOS: ρ (ω) = ρ0 = nlFP /πc which is on the boundary for BEC formation. It provided
condensation, as we had in Ref. [4], but it relied on finite cavity size effect. It theoretically
gives a linear PC dependence on T, Pc = (ℏω0/trt )s, x ln x ≈ aT , where x = 2n lFP kBT/hc and
a ≈ s, 1.13 × 10−5µW/K. We used lFP ≈ 2.13 mm and an average value for the factor ln x ≈ 4.36,
that doesn’t vary much in the relevant temperature range. Here we had a different factor s, and
understandably larger than the former s due to larger mode spacing (∆υ ≈ 50 Ghz) and only
m ∼ 81 FP modes in the 32.5 nm band case compared to the smaller average spacing in the
opposite chirp direction case. The experimental dependence of PC (T) for this FP, shown in Fig. 3
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indeed gave a linear dependence on T, PC = [(5.38 ± 0.5) × 10−3 T + 0.086 ± 0.01 ]µW with a
slope aexp ≈ 5.38 × 10−3µW/K that with s, = 2952 gave a good agreement with the theory. For
example, the critical power value at 300 K is Pc(T = 300K) = aT ≈ 1.6 µW. Altogether, these
measurements furtherly support the condensation observation.

4. Summary

We have demonstrated condensation of photons in a fiber cavity by using a special method for
obtaining sublinear mode-dispersion required for BEC in the large cavity limit. It was done in
the experiment by adding a linearly chirped-gratings FP in the cavity that gave a square-root
mode-dispersion relation [15]. We demonstrated condensation and a quadratic temperature
dependence of the critical power for condensation that followed the theoretical prediction for
condensation with a square-root mode-dispersion. It is different from the linear temperature
dependence in cavities with regular fibers that have a linear or close to linear dispersion where
the BEC relies on the finite size effect [4]. These findings, besides the thermal spectra and the
near cutoff population, support the condensation observation.
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