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Strongly pumped mode-locked lasers often form pulse
bunches. Although several mechanisms of pulse interaction
are known, none yields the experimentally observed long-
range attraction. Here we demonstrate theoretically and ex-
perimentally a new pulse interaction mechanism mediated
by the continuum noise floor that is a universal feature in
multipulse passively mode-locked lasers. Long-range attrac-
tion is facilitated by the depletion of the gain by the pulses,
leading to an inhomogeneous noise floor that biases the tim-
ing jitter of the pulses and produces an effective interpulse
potential with stable pulse bunch configurations. The pulses
attract by suppressing electromagnetic fluctuations, as do con-
ductors in the Casimir effect of quantum electrodynamics.
This enables manipulation and design of multipulse wave-
forms to ultimately make them useful for application of
mode-locked lasers. © 2016 Optical Society of America
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Passively mode-locked lasers (PMLs), pumped by sufficient power
and operating with anomalous dispersion, usually demonstrate
multipulse operation, in which there are several pulses propagat-
ing in the cavity at the same time. Once formed, these pulses
exhibit very rich dynamics, including random motion [1], forma-
tion of equally spaced configurations (harmonic PML) [2,3], and
the formation of ordered pulse bunches [4–9], with spacing rang-
ing from picoseconds to nanoseconds.

Despite intense research effort, the laws governing pulse inter-
actions in PML are only partially known. Interaction mechanisms
identified so far belong to four classes. The first is coherent over-
lap, which locks both the relative timing and phase of neighboring
pulses [5,7,10]. Second is the deceleration of trailing pulses
caused by gain depletion of the leading pulses that produces
long-range repulsive interactions, which drive the pulses to an
evenly spaced configuration, commonly observed in semiconduc-
tor lasers [3]. The third are interactions in fiber lasers mediated by
acoustic waves generated by electrostriction [11,12], which can be

both attractive and repulsive at long range. The fourth mecha-
nism is the medium-range interaction mediated by dispersive
waves [1,2,4] that accumulate at resonant sideband frequencies
by cw radiation emitted from pulses and lead to the formation
of low-intensity pulse pedestals [13–15].

The main deficiency of existing theories of pulse interactions
in laser cavities is that none implies the universal long-range at-
traction necessary to generate pulse bunches from an initial ran-
dom pulse configuration. In this Letter, we resolve this issue by
putting forward a universal pulse attraction mechanism induced
by the interaction of the pulses with the continuum noise floor,
combined with the saturation of the gain by the pulses.
Moreover, the interaction becomes repulsive when the separation
between pulses in the bunch decreases until it is comparable to the
width of the aforementioned dispersive-wave pedestals, implying
equilibrium pulse separation of tens to hundreds of picoseconds,
depending on the pedestal width, in excellent agreement with ex-
perimental observation in fiber PMLs.

The pulse interaction derived here is a result of the timing jit-
ter. When noise is homogeneous, the jitter is unbiased. However,
depletion of the gain medium weakens the noise in the wake of an
ultrashort pulse, biasing the jitter and giving rise to pulse drift,
which is universally attractive at large separations.

This noise-mediated pulse interaction is reminiscent of the
Casimir effect in quantum electrodynamics [16], in that both
interactions arise from the suppression of fluctuations of the
electromagnetic field, although the details are different.

Our analysis is based on the many-body theory of passive
mode locking, in which the steady state of the laser subject to
noise is studied as a statistical mechanics system of interacting
modes [17–23]. It shows, in particular, that the onset of mode
locking is a thermodynamic phase transition, and that when the
cavity power is increased beyond the absorber saturation point,
additional pulses form in a cascade of transitions between thermo-
dynamic phases labeled by the number of pulses [8,9].

Here we augment the theory by accounting for gain saturation,
which produces the noise floor inhomogoneity essential for noise-
mediated interactions. The pulse timing fluctuation statistics are
derived from their overlap interaction with the noise floor [24].
The resulting effective interpulse potential implies bunching
with pulse separations close to the pedestal width. The theoretical
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analysis is supported by experiments in fiber PMLs, demonstrat-
ing the noise floor inhomogeneity and its response to pulse
motion.

Optical pulses interact not only in lasers, and recent work
has demonstrated interactions in pumped nonlinear resonators.
Reference [25] studied acoustic-mediated interactions in fiber res-
onators, identifying intervals of attraction and repulsion, and
[26,27] studied overlap interactions. The latter mechanism in res-
onators is different from laser interactions because, unlike mode-
locked lasers, the waveform of nonlinear resonators contains a
strong cw component, which can mediate long-range interaction.

We model the dynamics of the laser waveform ψ�t; z� by the
Haus master equation:

∂zψ � i�∂2t ψ � 2jψ j2ψ� � G�ψ � − L�ψ � � Γ�z; t�; (1)

where the first two terms on the right model the chromatic
dispersion and Kerr nonlinearity, Γ�t; z� is a white-noise process
modeling spontaneous emission and other noise sources, and G
and L are the gain and loss operators, respectively, that take into
account the depletion and slow recovery of the gain and the spatial
the distribution of gain and loss in the cavity, in addition to the
standard saturable absorption and gain spectral response terms
[28,29]; see Supplement 1 for details.

The model includes the terms necessary for the full description
of the laser waveform, which consists of pulses, dispersive wave
pedestals generated from pulse scattering on discrete cavity ele-
ments [13,14], and the random quasi-cw floor generated by the
noise. Although the laser equation [Eq. (1)] is nonlinear, these
three components of the waveform combine approximately lin-
early, since they are characterized by different time scales. The
pulse waveform ψ a is a sum of N soliton-like pulses centered

at times tn with widths t�n�a < 1 ps; the pedestal waveform
ψb is a sum of low-amplitude waves with frequencies near ωn,
n � 1;…; N determined by the Kelly–Gordon resonance condi-
tion [13,14], with envelopes centered at the pulses that decay
exponentially on scales t�n�b ∼ 10–1000 ps; and the continuum
waveform ψ c extends over the entire cavity with round-trip time
tR > 10 ns.

Unlike the pulse and pedestal that are weakly perturbed by the
noise, the continuum waveform is noise generated. It must there-
fore be characterized by the continuum intensity I c � hjψ c j2i,
where h·i signifies the noise-averaged expectation value. I c is de-
termined by the linear terms in Eq. (1), so that it inherits the time
dependence of the gain g�t�, which is depleted by the pulses and
pedestals and recovers in the interpulse periods.

Since the gain dynamics is typically very slow, g�t� is approx-
imately linear far from the pulses. As shown in Supplement 1, far
from the pulses the continuum intensity I c is proportional to
1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − g�t�p

, where l is the linear loss. In contrast, near the
pulses, gain depletion leads to a sharp decrease in the gain, so that
g�t�n � < g�t−n�, where g�t�n � stand for the gain just after and just
before the nth pulse, respectively. Near the pulses, the continuum
intensity changes more slowly than the gain, and its value at the
center of the pulses, which determines the timing fluctuations,
is proportional to 1

2 �1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − g�t−n�

p � 1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − g�t�n �

p
�. Figure 1

shows schematics of the pulse, pedestal, and continuum wave-
forms with the gain profile for single- and two-pulse states.

The profile of the continuum resulting from our theory has
been verified by experiments in a fiber PML system (see
Supplement 1 for details of the laser). Figure 2 shows oscillograms
of the laser output signal of two consecutive round trips for several

Fig. 1. Schematic of the pulse bunching process. (a) A single pulse configuration (b) becomes unstable to the formation of a second pulse at a random
cavity position, (c) which is then attracted to the second pulse by noise interaction (d) until it reaches a steady state determined by pedestal overlap. The
pulse, pedestal, and continuum waveforms are shown in blue, green, and brown, respectively. The (negative) net gain profile for the given separations is
shown in violet. The pulse and pedestal widths are 0.001 and 0.01 round-trip time, respectively, and they saturate 70% and 20%, respectively, of the
maximum gain. The pulse waveform is clipped at high powers for visibility.
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pumping levels. The pulses and pedestals are localized near the
center of the time axis and are not resolved temporally. Most
of the pulse waveform is clipped to focus on the weaker con-
tinuum waveform. The measurements are compared to numerical
calculations of the mean continuum power for several net gain
values, exhibiting the variation of the continuum power caused
by pulse-induced gain depletion. Chromatic dispersion makes
the suppression of fluctuations extend before and after the pulses.
The good agreement between experiment and theory shows that
the continuum inhomogeneity is indeed a consequence of the
gain dynamics.

The overlap interaction of each pulse with the local continuum
waveform is a source of random timing jitter in the pulse timings
tn. The timing diffusion coefficient Dn is therefore proportional
to the local continuum intensity I c�tn� [24]. However, the inho-
mogeneity of the continuum biases the diffusion. To understand
the effective drift arising from this bias, we note that the con-
tinuum dynamical time scale, of the order of a nanosecond, is
much shorter than the millisecond time scale of relative pulse
motion, so that the continuum intensity profile adjusts itself
to the instantaneous pulse configuration.

This argument is supported by the experimental measure-
ments of the transient evolution of the continuum waveform
shown in Fig. 3. The measurements are obtained as those in
Fig. 2, but are taken just after the seeding of a new pulse, probing
transient approach to steady state. The graphs show that each
pulse creates a gain shadow, and that the continuum intensity
responds to the instantaneous gain profile (note that because of
clipping and limited oscilloscope resolution, the two pulses appear
as one peak in the steady state shown in the last panel).

In effect, therefore, the pulses in multipulse waveforms per-
form Brownian motion with timing-dependent diffusion coeffi-
cients Dn�t1;…; tN �. It follows from standard theory of biased
Brownian motion [30] that the drift velocity of the nth pulse is

∂htni
∂z

� 1

2

∂Dn

∂tn
: (2)

For concrete calculations, we study the simplest case of a two-
pulse waveform with identical pulse powers and pedestals. Global
time translation invariance implies that D1 and D2 depend only
on the separation time t s � t2 − t1, and, therefore,

∂ht si
∂z

� 1

2

∂Ds

∂t s
; with Ds � D1 � D2: (3)

The explicit form of Ds follows in a straightforward manner from
the considerations and results presented above, as detailed in
Supplement 1. Since Ds contains contributions from the two
pulses, and the continuum intensity at each pulse is the average
of two terms, Ds is a sum of four terms:

Ds�t s� �
1

2
D0�κ�Δp;Δb;Δb� � κ�1 − Δp; −Δb;Δb�

� κ�Δp − 1;Δb; −Δb� � κ�−Δp; −Δb; −Δb��; (4)

where Δp, Δb are the depletion of the gain by the pulse and ped-
estal, and by the pedestal only, respectively, divided by the mean
gain, and

κ�Δ1;Δ2;Δ3� � �1 − Δ1

t s
tR

� Δ2 − Δ3�e−t s∕tb � e�ts−tR�∕tb��−1∕2:

(5)

Here, tR is again the laser round-trip time, and D0 is the diffusion
constant of a single pulse with the same mean gain.

Equation (4) obeys the obvious symmetries Ds�t s� �
Ds�t s � tR� � Ds�−t s�, so we need to study it only in the interval
0 ≤ t s ≤ tR∕2, shown in Fig. 4. When pedestals are absent, cor-
responding to Δb � 0 in Eq. (4), the effective potential − 1

2Ds is
universally attractive, and the only minimum is at zero separation.
However, gain depletion by the pedestals is a source of repulsion
for pulse separations comparable to or smaller than the pedestal
width, which together with the long-range attraction can form a
stable equilibrium point in the interpulse potential. In the typical
situation, where the pedestal width is much smaller than the
round-trip time, the effective potential has a unique minimum at

Fig. 2. Inhomogeneous continuum and its dependence on pumping.
Experimental measurement (left) and theoretical calculation (right) of the
continuum power in a multipulse PML for several pumping levels. The
laser was injected with ∼0.6 mW of amplified spontaneous emission.
The continuum power was measured by averaging output power over
several hundred round trips; since the continuum is the only nonnegli-
gible component of the waveform in more than 99% of the cavity, one
can identify the output waveform with the continuum waveform, except
near the sharp peak in the middle. Experimental graphs are ordered by
increasing pumping from ∼12 to ∼45 mW and theoretical graphs by
increasing mean gain g0 from bottom to top, showing the increase of
continuum power and its variation with increased pumping.

Fig. 3. Pulse motion and evolution of the continuum. A similar mea-
surement to the one shown in Fig. 2 with a single pumping value, show-
ing (a)–(c) three consecutive transient states and (d) the steady state. The
experiment shows how the continuum power profile changes as the
pulses approach each other to form the bunch, seen as a single peak
in panel (d) due to the limited resolution of the oscilloscope.
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t�eq�s � tb log

�
Δb

Δp

tR
tb

�
(6)

if the value of the logarithm is positive. This result completes our
demonstration that the noise-mediated interaction gives rise to
pulse bunching of two-pulse waveforms, and that the steady-state
separation is determined by the pedestal properties.

The key ingredients in the noise-mediated interaction mecha-
nism are present in every PML system. Since it acts in conjunc-
tion with several other interactions, mentioned briefly above, the
bunching is not always observed, and its properties are system
dependent. Combining, if necessary, with the previously known
interactions, the theory presented here enables the quantitative
modeling of multipulse waveforms. Pulse shaping and control
is an important field in ultrashort photonics and its applications
[31]. Identification and control of the interaction mechanism can
now lead to waveform shaping on the bunch level. opening excit-
ing possibilities for applications of multipulse waveforms.
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See Supplement 1 for supporting content.
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Fig. 4. Two-pulse noise-mediated interaction effective potential. The
timing separation diffusion coefficient Ds times − 1

2
(normalized by the

single pulse diffusion coefficient D0) as a function of the separation t s
(normalized by the cavity round-trip time tR). The black (red) curve
shows the interaction potential for pulses that deplete 70% of the net
gain without (with) pedestals, whose width is 0.01 of the round-trip time,
that deplete an additional 20% of the net gain. The latter displays a stable
fixed point near t s � 0.024tR. Inset: zoom on the small separation region
that includes the minimum induced by the pedestal, overlaid with the
pedestal waveform (green).
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