
Researchers are using statistical mechanics to 
uncover thermodynamic-like properties in optical 
systems. This unique research direction could 
have far-reaching implications for photonics.
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Artist’s interpretation of 
entropy and order in a cavity.
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Many-body light 
systems
Many light systems contain 
many degrees of freedom. For 
example, lasers that generate 
short pulses by mode-locking 
can have millions of modes. 

These photonic systems 
call for a statistical mechani-
cal approach that was devel-
oped to treat many degrees of 
freedom. There is remarkable 
similarity, for example, 
between the mode-comb in 
the frequency domain and the 

canonical interacting magnetic spin systems 
in the spatial domain. 

Mode-locked lasers include “particle” 
interaction akin to what exists in many-body 
systems, and noise takes on the role of tem-
perature in classic systems. In addition, we 
talk about equilibrium rather than thermal 
equilibrium, since lasers are not in thermal 
equilibrium. With those adjustments, we see 
that both scenarios have a similar mathemati-
cal basis, with rigorous solutions and experi-
mental results.

We must look at the role of entropy to 
understand the meaning of thermodynamic-
like behavior in photonic systems. In statisti-
cal mechanics, water is not in its solid form 
at temperatures higher than 0 °C; here, gas or 
liquid phases prevail, even though the solid 
state has lower energy. However, a nonzero 
temperature elicits high-energy states that 
can dominate the matter state due to their 
very large number (entropy). It is therefore the 
minimum of the free energy that determines 
the many-body system phase. The situation is 
similar in passive mode-locking. 

From the energetic point of view, the 
saturable-absorber in a cavity should drive 
all modes to be aligned in phase and produce 
short pulses right away. However, that scenario 
does not happen because of the small noise 
that evokes less favorable energies but has 
many-mode phasor configurations (entropy) 
that can dominate. 

n photonics, quantum mechan-
ics gets the glory—yet its 
cousin statistical mechanics 
can also play an important 
role in photonic systems. 
Many-mode lasers are prime 
examples. Passive mode-
locking is an exact analogue of 
a first-order phase transition 
from disordered to ordered 
phase and active mode-locking 
maps to the known spherical 
model, which—in higher than 
two dimensions—has a second-
order phase transition.

Researchers first noted the 
similarity between second-order phase tran-
sitions and lasing shortly after the laser was 
invented, but they stopped short of employing 
many-body statistical mechanics to describe 
what was happening. Recently, however, there 
has been new interest in various many-body 
photonics systems, including pulsed and 
random lasers, as well as exciting classical 
and quantum light and photon condensates.

I

Let There Be Ordered Light 
From random mode phasors (noisy continuous wave)  
to ordered mode phase (pulses)  
A laser cavity is full of entropy that can be viewed in the domain of modes 
(frequency) through the many phasor configurations (light-blue arrow arrays), 
or in the spatial or time domains through the many waveforms (white patterns) 
of light in the cavity. 

In a thermodynamic model, system equilibrium is not determined by the 
minimum energy (H), but by the minimum free energy F = H–TS, which includes 
entropy (S) and temperature (T). Nonzero temperature populates high-energy 
states that can be numerous (entropy), and therefore this dominates the 
equilibrium phase. 

Noise is 
inevitable 

in photonic 
systems, and 
it is not just a 
perturbation; 

it is a real 
dimension—like 

temperature. 

OPTICS & PHOTONICS NEWS  SEPTEMBER 201342        
1047-6938/13/09/40/8-$15.00 ©OSA

Baruch Fischer



43  SEPTEMBER 2013  OPTICS & PHOTONICS NEWS

Noise is inevitable in photonic systems, 
and it is not just a perturbation; it is a real 
dimension—like temperature. Taking 
it only as a perturbation is like limiting 
ourselves to watching physical systems 
only around 0 K. The noise stems from 
spontaneous emission and other internal 
and external sources. The outcome is 
a competition between the energy and 
entropy that govern the disordered (cw) 
or ordered (pulse) mode phase separated 
by a first-order phase transition that is the 
passive mode-locking.

Statistical light-mode dynamics 
Mode-locked lasers can have hundreds to 
millions of modes. There is clear similarity 
between the mode-comb in the frequency 
domain and the canonical interacting 
magnetic-spin Ising systems in the spatial 
domain. Instead of spins, the lasers have 
mode phasors, which are complex ampli-
tudes whose directions are the phases.

The interaction between the modes 
due to a saturable-absorber in the cavity 
causes passive mode-locking (PML), and a 
modulation results in active mode-locking 
(AML). In PML, there is a long-range, 
four-mode interaction between all modes. 
In AML, it is a near-neighbor mode interac-
tion similar to that seen in the classical 
Ising model for spins. In fact, AML is 
equivalent to the spherical model, a vari-
ant of the Ising model for magnetic spins.

The steps in the statistical light 
dynamic formalism in many mode 
lasers are:

1. The many-mode master equations are 
written to include a white noise term 
with strength T that has the role of 
temperature. 

2. The master equations are transformed 
into a distribution function for the vari-
ous mode configurations (using Fokker-
Planck equations). We skip the detailed 
mathematics to give you the important 
bottom line: The stationary (invariant 
measure) mode system configurations 

Studies on many-mode 
photonic systems could 
lead to:

c New and exactly 
soluble models 
in statistical 
mechanics.

c Realization of  
one-dimensional 
many-body  
systems such as  
the laser axial  
mode system—a 
rare opportunity  
in physics. 

c Achievement of 
high-dimensional 
systems such as  
the spherical  
model in any 
dimension (even 
beyond three).

c Experimental  
control of the 
“particle” 
interaction that 
is infrequent 
in statistical 
mechanics  
systems. 

c Ability to vary  
noise (the 
photonic analog 
to temperature) 
by controlling its 
injection into  
the cavity.

Many 
possibilities in 

many-body 
photonics

probability function (equilibrium 
but not thermal equilibrium) is a 
Boltzmann-Gibbs-like distribution:

    r(a0, a±1, ...) = e–HI /T / Z ,

 where ai denotes the complex mode 
amplitudes (phasor magnitudes and 
directions), T is the noise power, Z is 
the normalization factor, or partition 
function, where Z = S e–HI /T (the summa-
tion is over all values of a0, a±1, ...), and 
HI

 is the Hamilonian-like energy weight 
responsible for the mode interaction. 

This is a central result that means 
that we are in the territory of statisti-
cal mechanics. 

For PML, HI results from the saturable-
absorber (with strength g) that in the 
mode-space presents absorptive-based 
(imaginary coefficient Kerr effect) 
four-wave mixings between all modes: 
HI = –(g/2) S aja

*
kala

*
m (j – k + l – m = 0). 

In AML, it is only a near neighbor 
interaction induced by the modulation 
with strength A: HI  = –(A/2) S aia

*
i±1. We 

can see the similarity to magnetic spin 
systems, here with complex amplitudes 
instead of spin vectors. 

3. Next comes the important and chal-
lenging step of finding Z and the free 
energy F in an interacting many-body 
system. This problem is insoluble in 
most statistical mechanics cases, but is 
exactly soluble in mode systems. PML 
falls in the mean field category due to 
the long-range interaction, and AML is 
mapped to the spherical model that is 
soluble in all dimensions. 

PML lasers: First-order  
phase transitions
In PML, the partition function Z and the 
free energy F = –T log Z are calculated in 
two ways: in the mode (frequency) domain, 
by computing the various mode phasors 
configurations and their magnitudes and 
directions, and in real space, by working 
out the various wave forms in the cavity. 
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PML laser with first-order phase transition

For free energy, the calculation 
gives the following exact and very 
simple function:

F = –
g
–2 x4 – T log (P – x2)

where x is the light pulse amplitude 
and P is the total laser power. The first 
term in the right hand side of F results 
from the energy (mode coupling) and 
the second from entropy. The normal-
ized pulse amplitude expectation 
value m = < x >/P 1/2 is determined by 
x, which gives the global minimum F. 
In addition, m ≤ 1 can be considered as 
the system order parameter—similar to 
magnetization in spin systems.

For critical phenomena, we need another dimension 
in the phase diagram—akin to pressure in gas-liquid 
systems and the external magnetic field in magnetic 
spins. In the laser cases, it is an external pulse (comb) 
of strength h with a rate that exactly matches the cavity 
roundtrip (match the mode comb) or its multiple. It adds 
to the free energy F the term –2hx. 

We can identify in the laser two thermodynamic-
like phases—one characterized by spontaneous pulses 
and the other by field-induced para-pulses. They are 
separated by a first-order phase transition boundary 
that is terminated by the critical point. Such thermo-
dynamic systems are characterized by special finger-
prints called critical exponents. The experiments yield 
the exponents b . 0.5, d . 3, and g . 1, which are the 

From left: Free energy (with h=0) for various noise levels; first-order phase-transition shown via the order parameter 
(pulse power) and light waveforms in the cavity.

We can identify 
in the laser two 

thermodynamic-
like phases— 

one characterized 
by spontaneous 

pulses and  
the other by  

field-induced 
para-pulses. 

mean-field values that are exact in the 
laser system.

AML lasers and the  
spherical model
In an AML system, the frequency 
modulation that matches the cavity 
resonance causes a coupling between 
near-neighbor modes, as in the classical 
Ising model. In fact, it is equivalent 
to the spherical model, a variant of 
the Ising. In the latter, the spins have 
values of si = ±1, while in the spherical 
model, each spin si can have any value, 
but there is a single overall constraint 
of S si

2 = N, where N is the number of 
spins in the system. 

Similarly, in the case of the mode system, ai are 
complex amplitudes (phasors) that can be of any magni-
tude and direction (phase), but with a constraint on the 
overall power of all modes: S ai ai* = P. In the spherical 
model, only in more than two dimensions is there a sec-
ond-order phase transition from disordered spin phase 
to long-range ordering, due to the high-dimensional 
connectivity. Therefore, in the usual one-dimensional 
AML laser, there will not be a long range phase ordering 
of the modes at any finite noise level. 

Statistical light-mode dynamics can shed light on 
an inherent difference between AML and PML. The 
shortest pulses that can reach the regime of a few 
femtoseconds are obtained by passive mode locking. 
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PML lasers exhibit a phase transition that is absent in 
active ones under regular modulation, where no global 
mode ordering exists at any finite noise level. This falls 
in the category of one-dimensional many-body systems 
with short-range interaction. 

Weak noise, even spontaneous emission, can affect 
the phase alignment of a long but fragile mode chain 
(comb), preventing a global mode-phase ordering, 
especially for very broad frequency bandwidths. PML 
is different due to the saturable absorber that causes an 
effective long-range interaction between all modes. More 
complex modulations and higher dimensions can give 
phase transitions in AML as well—and therefore shorter 
pulses via condensation or the hyper-combs.

Multi-dimensional mode systems with 
second-order phase transitions
What about higher dimensions? A direct way to obtain 
high dimensional mode lattices in lasers in k

– 
space 

would be to use two- and three- dimensional laser cavi-
ties, which are not easily achievable with mode coupling. 

We recently suggested the possibility of constructing 
an effective d-dimensional mode hyper-comb with near 
neighbor mode interaction from one-dimensional AML 
with multi-frequency modulation. Each modulation 
adds another dimension. The AML hyper-comb can be 
mapped to the spherical model in d-dimensions, and it 
can therefore serve as a rare physical realization at any 
dimension, even those higher than three. 

One important implication is that the spherical model 
has in more than two dimensions, upon decreasing T/P, 

Phase transition and critical point
Phase diagram in passive mode locking in the normalized  P/T 1/2–h

~
 plane. The first-order phase-transition line ends at a critical point. 

(Right) Experimental results. (Center and left) Results given by the theory; the middle one is rotated around the m2 axis to take into 
account noise from the external pulse that exists in the experiment. Phys. Rev. Lett. 105(1), 013905 (2010).

Multi-pulse generation in successive 
first-order phase transitions
PML in an erbium-doped fiber laser with controllable noise injec-
tion, shown by the pulse power vs. the noise power, obtained when 
another higher order saturation term with opposite sign is added.
Phys. Rev. Lett. 93(15), 153901 (2004).

a second-order phase transition to a global phase-ordered 
mode hyper-comb. This means that hyper-combs made 
by AML lasers have the potential to capture very broad 
coherent frequency bandwidths that can generate 
ultimately short and robust pulses.

Laser light condensation
Bose-Einstein condensation (BEC) is a special many 
non-interacting boson phenomenon that was observed in 
atomic particles at ultra-low temperatures. Researchers 
are increasingly turning their attention to the interest-
ing question of whether and how a BEC can occur with 
non-atomic bosons, such as photons. 

Here we describe two classical condensation effects 
in AML and cw-lasers. Both are based on weighting the 
modes in a noisy environment in a loss-gain scale, rather 
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than in the (photon) energy in BEC, 
and the analyses are derived directly 
from the master equations with noise. 

Pulse condensation in AML lasers
In certain conditions, AML can 
follow a classical route to condensa-
tion, which is seen in the lightwave 
pattern in the cavity in the time 
domain or the corresponding 
spatial domain. The “particles” and 
“energy levels” are given by the AML 
eigenmodes, which, in the case of 
common harmonic modulation, are 
Hermite-Gaussian functions—where 
the lowest one corresponds to the 
optimal pulse. 

We nevertheless allow for the 
modulation a general power-law 
dependence with an exponent h (formally similar to BEC 
in a potential trap). In most experiments, the modulation 
is sinusoidal and can be approximated near the lowest 
loss region by a quadratic dependence, h = 2 (harmonic 
oscillator). The modulation exponent h in AML has an 
important role in condensation through the density 
of states that they produce—just as in the case of the 
potential trap’s exponents in BEC.

Usually the lowest loss eigenmode is the most pop-
ulated state. However, noise causes a broader occupa-
tion of those states with a hierarchy that depends on 

their losses. Nevertheless, when 
the modulation exponent h < 2, 
the system shows a condensation 
route when the power increases 
or noise decreases—similar to the 
condition for BEC in a one-dimen-
sional trap. The condensate is 
characterized by a sharp transition 
and dominance of the lowest-loss 
pulse eigenmode power. 

CW light condensation 
This condensation phenomenon 
is even simpler than the first. It 
occurs in linear mode systems such 
as regular cw lasers in the mode’s 
spectral domain.

Of course, noise is present, but 
we also need certain conditions 

on the loss-gain filtering spectrum (“potential” trap). 
Such spectra are taken in most analytical studies to be 
parabolic. Here, however, we allow a general power-law 
dependence for the loss spectrum « ~|(v – v0)|

h near the 
lowest-loss mode frequency v0. The exponent that gives 
light condensation must be h < 1, compared to h < 2 in 
the AML case in the former section.

The light condensation behavior is similar to BEC but 
classical. As in BEC, there is no direct mode (particle) 
interaction, but rather a global constraint on the overall 
power (“particle” number). Nevertheless, the mode 

Construction of high-dimensional mode-combs (hyper-combs)
A two-dimensional hyper-mode construction from one dimension. The active mode locking modulation has a few frequencies—including 
the basic one and higher orders. They induce coupling Jn between modes. The 2-D mode-lattice with nearest neighbor mode interaction 
is obtained by shifting mode segments, one above the other. This procedure can be repeated to higher dimensions—a rare realization of 
the spherical-model. Each modulation frequency adds a dimension. Opt. Express 21(5), 6196-204 (2013).

In certain 
conditions, AML 

can follow a 
classical route 

to condensation, 
which is seen in the 
lightwave pattern 
in the cavity in the 

time domain or 
the corresponding 

spatial domain. 
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energy levels in light condensation are measured in 
a loss-gain scale inherent in laser cavities, where the 
condensate “ground-state” is the lowest-loss mode; 
unlike in a BEC, that mode can be anywhere in the 
frequency band.

The loss scale gives a mode occupation hierarchy and 
power spectra that resembles Bose-Einstein distribution. 
Like BEC, light condensation is characterized by a nega-
tive “chemical potential” that is the gain minus the low-
est loss mode value that becomes zero at condensation. 

Experimental work to observe light condensation is 
under way.

To BEC or not to BEC:  
photons in optical cavities
Since photons are bosons, can they exhibit real quantum- 
based BEC? We know that BEC necessitates the particle 
conservation that determines the chemical potential. 
Although photon gas doesn’t meet that requirement 
and its chemical potential is zero, one can ask whether 
photons in high-finesse laser cavities and pumped gain 
media that keep the light power close to constant can 
show BEC. In recent work, researchers reported observ-
ing photon-BEC in a dye-filled optical microcavity at or 
close to room temperature. The BEC was associated with 
a spectrum collapse to a single frequency at the lowest 
transverse mode, when the power was increased beyond 
some critical value.

However, it’s not clear whether this truly represents 
a thermal-quantum-based photon BEC phenomenon, 
since spectral collapse to a single frequency also occurs 
in lasing and classical light condensation. The “energy” 
measure of photons in multi-mode laser cavities is mostly 
governed by a loss-gain scale that gives the hierarchy and 
distribution of the modes and frequencies, rather than by 
photon frequency (energy) scale in thermal equilibrium.

In any case, this raises question of whether light 
condensation provides a new type of photon (“super-
photons”?) or quantum light state.

Many directions
There’s no telling where this new research area could 
lead—perhaps to the realization and test bed for new 
strictly one- or high-dimensional many-body systems 
and definitely to a deeper understanding of many-body 

photonic systems. Many-body photonics can also be 
approached in various ways beyond using statistical 
light-mode dynamics, or explored in other linear and 
nonlinear systems with large-scale coupled spatial 
modes or light channels in waveguides or free space. 
The opportunities are abundant. OPN

Baruch Fischer (fischer@ee.technion.ac.il) and Alexander 
Bekker are with the department of electrical engineering, 
Technion, Haifa, Israel. 
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Pulse condensation in an AML laser cavity
The pulse waveform in the z/l = t/tR and P

–
/T plane. (The variables 

z and l refer to cavity axis and length; t is time; and tR is the cavity 
roundtrip time.) Condensation occurs for the exponents h = 1/2, 1. 
The experiment was done with an actively mode-locked erbium-
doped ring fiber.  Opt. Express 18(16), 16520-5 (2010).

Visit www.osa-opn.org for videos showing pulse waveforms in PML with external injection as they vary along two paths of the phase 
diagram and experimental multi-pulse generation beside the corresponding order parameter in a PML laser as noise is varied. 
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