
Laser mode hyper-combs 

Alon Schwartz and Baruch Fischer
*
 

Department of Electrical Engineering, Technion, Haifa 32000, Israel 
*fischer@ee.technion.ac.il 

Abstract: Laser mode and frequency combs, as lasers, are commonly one-

dimensional systems. Here we present a construction of multi-dimensional 

laser-mode lattices (mode hyper-combs) with unique properties. They are 

obtained from regular 1-dimensional combs by multi-frequency modulation 

in active mode-locking (AML). The hyper-comb, with near neighbor mode 

coupling and noise functioning as temperature, is mapped to interacting 

magnetic-spins lattices in the spherical-model which is one of the few 

statistical-mechanics systems soluble in all dimensions. The important 

result is that such systems have, in d>2 dimensions, a phase-transition to a 

global phase-ordered mode hyper-comb. It can therefore change the nature 

of AML lasers by capturing very broad coherent frequency bandwidths and 

obtaining ultimately short and robust pulses. Additionally, the hyper-combs 

can serve as a rare physical realization of the spherical-model in any 

dimension. 
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1. Introduction 

Ultra-short laser pulses that reach the few femtosecond regime [1,2] are a key platform for 

advancing important fields like metrology [3–5] and attosecond science [5–9]. They are based 

on broad frequency combs [3,4] of phase-aligned axial-modes, usually obtained by mode-

locked lasers [1,2,10]. Those combs (as mostly the lasers) are one-dimensional. 

Broad frequency combs are mostly obtained by passive mode-locking (PML) [1–10] 

which produces ultra-short pulses with durations that can reach a few optical cycles. Active 

mode-locking (AML) [10,11] is another way to achieve short pulses, generally with longer 

durations compared to PML. There is an inherent difference between the two methods, 

explainable by statistical light-mode dynamics (SLD) [12–22]. SLD treats the laser as a 

many-body system in a statistical-mechanics approach, where the modes are the “particles” 

and noise has the role of temperature. The mode phases replace the spin orientations of the 

magnetic spin case. On that basis, the pulsation in PML was shown [12–15] to be a first-order 

phase-transition from a phase-disordered to an ordered mode system. PML lasers were also 

shown to exhibit critical behavior [16,17]. On the other hand, in AML under regular 

modulation, no global mode ordering exists at any finite noise level [19]. It falls in the 

category of 1-dimensional many-body systems with short-range interaction that do not have 

phase-transitions and global ordering at any temperatures, but zero, due to coupling (energy) 

versus entropy considerations. It means that weak noise (“temperature”), even spontaneous 

emission, can affect the phase alignment of a long but fragile mode chain (comb), preventing 

a global mode-phase ordering [19], especially for very broad frequency bandwidths. PML is 

different due to the saturable-absorber that causes an effective long-range interaction between 

all modes [12–15]. Also complex AML modulations can result condensation-like behavior 

[20,21]. With regular modulations, the 1-dimensional laser frequency-comb produced by 

AML was mapped [19] to the 1-dimensional spherical model [23–27], a variant of the Ising 

model for magnetic spins with nearest-neighbors interaction that was studied in statistical 

mechanics and was solved analytically in all dimensions. (In the Ising model the spins have 

values of 1is  , while in the spherical model each spin is  can have any positive or negative 

value, but there is a single overall constraint of 
1

2
N

i

i Ns


 , where N  is the number of spins in 

the system.) Similarly to the spherical model, there is no constraint in the laser system on the 

power of each individual mode, but there is one on the overall power of all modes. 
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Since the dimensionality has a major importance in statistical-mechanics systems, the 

comb fragility of AML in 1-dimension may be eliminated at higher dimensions. Indeed, in the 

spherical model, in a dimension higher than 2 (d > 2, excluding 2; d in statistical-mechanics 

calculations is not restricted to integers) there is a second-order phase-transition from 

disordered spin phase to long-range ordering, due to the high-dimensional connectivity [23–

27]. A direct way to obtain higher than 1-dimensional mode lattices in lasers in k -space 

would be to use higher dimensional laser cavities which are not easily achievable with mode-

coupling. The idea in this work is to construct an effective d-dimensional mode hyper-comb 

with near neighbor mode interaction from 1-dimension. We proceed with the way to do that. 

2. The mode hyper-comb construction 

The d-dimensional interacting mode-combs are obtained by a remarkably simple way: AML 

with a multi-frequency modulation, d frequencies for d dimensions. The first frequency 

matches the basic cavity resonance 
0

= c / nl  that usually falls in the RF regime, (l is the 

cavity roundtrip length and n is the refractive index), We then add more terms with multiples 

of the lower frequencies, having altogether: 
1 0 2 0 0

, ,...
d

m m m    (here 
1

1m  ). Each 

modulation frequency 
0n n

m    (n = 1,2,…) induces coupling (mutual injection) between 

modes i and i ± mn. (We assume cosinusoidal amplitude modulation that produces two 

sidebands around each mode, but any higher, but finite number of sidebands will not change 

the basic results.) For d = 1 (with 
1

1m  ), we have the regular 1-dimensional mode frequency 

comb with induced nearest-neighbors coupling between modes i and i ± 1. A second 

modulation frequency 
2 2 0

m    induces additional interactions between modes j and 

2
j m , schematically shown in Fig. 1. Therefore, we divide the 1-dimensional comb into 

segments, each with 
2m  modes, and fold them to obtain additional rows and a 2-dimensional 

lattice mode structure 
i ja , as shown in Figs. 1(b). 

i ja  denotes the complex amplitude of the 

laser light modes. In that lattice, each mode 
i j

a  is coupled to its four nearest-neighbor modes 

1, 1i ja  
. With a third modulation having a higher harmonic frequency which is also a multiple 

of the second frequency, we apply a similar procedure, illustrated in Fig. 2. Now, successive 

folding of 2-dimensional arrays of 
2 3 2

( )/m m m  modes leads to a 3-dimensional lattice of 

modes i j ka , each coupled to its six nearest-neighbor modes 1, 1, 1i j ka    . This restructuring 

procedure can proceed to higher dimensions by including in the modulation more frequency 

terms. (Then we have additional indices in i j k la ... .) We stress that it is not just an arbitrary or 

formal restructuring. We obtain a d-dimensional mode lattice (hyper-comb) with nearest-

neighbors coupling just as we have in solid state atomic or spin lattices. Nevertheless, the 

hyper-comb is reconstructed from one dimension, and is not a regular mode structure in k -

space. Real k -space mode-combs can be achieved in two or three-dimensional laser cavities 

but are difficult to obtain experimentally with mode-coupling. 

In the hyper-comb the inter-mode distance, measured in frequency terms, is given by: 

 ' ' ' 1 2 3 0[( ') ( ') ( ') ...] / 2i j k i j k i i m j j m k k m          ... ...  (1) 

( 1 1m   when the first frequency modulation is taken to be the cavity resonance.) Thus, the 

frequency difference between nearest-neighbor modes along the n + 1 axis is higher by a 

factor 1 /n n nN m m  from the nearest-neighbors difference along n. 
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Fig. 1. Construction of a 2-dimensional mode hyper-comb: The small arrows at the lattice 

points denote the modes phasor, where the directions indicate the phases. (The comb size in 

the figure serves only for illustration). (a) 1-dimensional mode frequency-comb: AML 

modulation with two frequencies, 
1 1 0 2 2 0

,m m       with
1

1m   and 
2

7m  , that 

induce coupling Jn between modes. (b) 2-dimensionsl mode-lattice constructed by shifting 

mode segments (here each of seven modes) from the linear mode chain in (a), one above the 

other. Each mode is coupled to its four nearest-neighbor modes. Note the “broken bonds” 

between segments denoted by X, that can be neglected for large hyper-mode sizes. 

 

Fig. 2. Construction of a d-dimensional mode hyper-comb: (The comb size in the figure serves 

only for illustration.) (a) 1-dimensionsl mode system with three modulation frequencies, 

0n n
m    that induce coupling Jn between modes j and j ± mn. In this figure 

1 2 3
1 7 35, ,m m m   , and generally 

3
m is a multiple of 

2
m . (c) 3-dimensionsl mode-

hyper-comb (with the above three modulation frequencies), constructed by further shifting the 

2-dimensional mode matrices of Fig. 1(b). Each mode is coupled to its six nearest-neighbor 

modes. This procedure can be proceeded to higher dimensions. 
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It is also possible to construct different kinds of hyper-combs, such as the triangular 

(hexagonal) mode-lattice shown in Fig. 3, by using three modulating frequencies. Then, 

1
/

i i
m m


 are not necessarily integers. In Fig. 3, 

3 2 3 3
/ / ( 1) 8 / 7m m m m   . 

 

Fig. 3. Triangular (hexagonal) mode-lattice: (a) 1-dimensionsl mode-comb with three 

frequencies, 
1 0

   , 
2 2 0

m   , and 
3 3 0 2 0

( 1)m m      , and mode coupling Jn. (In 

this figure 
1 2 3

1 7 8, ,m m m   ). (b) Reconstruction to a 2-dimensionsl triangular 

(hexagonal) mode-lattice. In the reconstruction procedure each additional segment that is 

placed as a new row is horizontally shifted by half a period. It reflects the coupling of each 

mode in the former row to two adjacent modes in the above row, besides the coupling to 

nearest neighbor modes in the same row. Experimentally, those couplings can be different in 

strength and sign. 

3. The mode hyper-comb and the spherical-model 

The d-dimensional spherical model is one of the few (if not the only) model that have 

analytical solutions in all dimensions [23–27]. It exhibits for d>2 a second-order phase-

transition from disordered to ordered spin phase at a finite temperature. The mapping of the 

hyper-comb to the spherical spin model has a far reaching meaning to AML and short pulse 

generation. 

The AML equation of motion for the complex amplitudes ...ijka with noise is given by [19]: 

 1, 1, 1

1 , , ...

[ ( ) ] ( , ) ,
2

d
i j k n

i j k i j k i j k

n i j k

a A
a g P l a t 


  




   


 

...

... ... ...  (2) 

where  is the long term time variable that counts the round-trips of light in the laser cavity, 

An is the complex modulation amplitude at frequency 
n

 , g(P) is the total power P dependent 

slow (compared to one roundtrip) saturable gain, and l is the loss in the cavity. The equation 

does not include dispersion. ...i j k  is an additive noise term that can originate from 

spontaneous emission, or any other internal or external source, modeled by a white Gaussian 

noise process with covariance 2T :   , , ,

*
( ) ( ') 2 '

i j k i j k i i j j k k
T           

... ...
... , 

...
( ) 0

i j k
   , where < > denotes average, and T has the role of temperature. Equation (2) 

can be written as: 
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*

1, 1, 1

* *

1, 1, 1

/ / ( , )

/ / ( , ) ,

ijk i j k ijk

ijk i j k ijk

a a t

a a t

 

 

  

  

     

     

... ... ...

... ... ...

H

H
 (3) 

where H  is a Hamiltonian-like quantity (here lossy and imaginary [12,19]): 

 
int 0 ln( ) ,satg P P lP   H H  (4) 

and 
int

H  is the mode-interaction part: 

 *

int 1, 1, 1

1 , , ...

.
2

d
n

i j k i j k

n i j k

A
a a   



   ... ...H  (5) 

We note that in Eq. (2) we took a flat profile [19] for the spectral filtering and the gain 

spectrum that is justified for broad bandwidths and enables the exact mapping to the spherical 

model. It many cases it is taken to be parabolic, but apart from some effect on the pulse 

shape, it gives the basic features of the mode system and the pulses. As done in [19], by 

deriving the corresponding Fokker-Planck equations, and assuming a stabilized total power 

*

0

, , ...

i j k i j k

i j k

P a a P  ... ...
, we have for the steady state mode distribution: 

 0 int( ,... ) ( )exp( / 2 ).i j k i j ka a P P T   ... ... H  (6) 

Therefore the mode system configuration obeys Gibbs-like statistics [19], with 
int

H  and the 

noise T functioning as the (interaction) energy and temperature. This is the central base that 

connects the mode system to statistical mechanics [12–19]. The global constraint on the mode 

power: 
*

0

, , ...i j k

i j k i j ka a P ... ... , makes it similar to magnetic spin system in the spherical model. 

The mapping is simply done [19] by redefining 1/2

0( / )i j k i j ka N P a... ...  for the mode 

complex amplitudes that replace the spins. Then we rewrite Eq. (5): 

*

, ,

int 1, 1, 1
1 i j k

d

n i j k i j k
n

a a   


   ... ...
H J  with a normalized mode-coupling parameter 

0
/ 2

n n
A P NJ . 

For simplicity, we assumed that all modulation frequencies have the same phases and 

amplitudes (
n

A A ). Then the coupling (generally complex) in all axes are equal, 
n
J J  

(isotropic crystal), but it can be generalized to anisotropic coupling. 
nJ  can be easily varied 

and also have different relative signs (like in anti-ferromagnetic spins) in one experiment by 

changing the corresponding amplitudes and phases. We also note that in experiments with 

lasers, it is the power P0 that is usually varied, although T can also be changed by noise 

injection [13,14] as well as the modulation amplitude A. 

According to the spherical model [23–27], the mode system for d >2 undergoes a second-

order phase-transition. It formally occurs in the thermodynamic limit, but practically finite 

hyper-comb sizes can be sufficient (discussed below). The average (over magnitude and 

phase) normalized mode complex amplitude i j ka  is given by [25,26]: 

 

1/2(1 / )
,

0
i j k

c c

c

K K for K K
a

for K K

  
   


 (7) 

where /K T J , 
0

/ 2AP NJ , is the mode nearest-neighbor coupling strength, 
0

P  - the laser 

total power, A - the modulation amplitude, N - the overall mode number, and T is the noise 

strength (“temperature”). The second order transition occurs at ( / )
c c d

K T b J , where 
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0

0

exp( )[ ( )]
d

d
b dx J ix dx



  , for d>2, (
3 4

0.505, 0.310b b  , 
5

0.231b  ), and J0 is the zero 

order Bessel function. Equation (7) describes a second-order phase transition at 
c

K K , 

corresponding to a critical exponent [26] 1 / 2  . Since in lasers we usually vary the laser 

power *

0

, , ...

i j k i j k

i j k

P a a  ... ...
, it is useful to write Eq. (7) explicitly with 

0P : 

 

1/ 2 1/ 2

0 0 0

0

( / ) (1 / )

0
.

i j k

c c

c

P N P P for P P
a

for P P

 




   


 (8) 

Therefore, above 
c

P , the mode system becomes ordered with long-range mode-mode 

correlation that was shown [23] to be for d = 3: 
*

' ' ' (1 / ) [( '),( '),( ')]i j k i j k ca a K K C i i j j k k        . It consists of a mean value, 

independent on mode distance, plus a function C that decays with the distance due to the 

fluctuations. It means that for 
cK K , the constant correlation, that increases to 1 as K grows, 

is between all modes, so that 
corN N . 

Below 
c

K , for 2d   or any K for 2d  , 0i j ka  , but the mode correlation is 

nonzero but decays with increasing mode distance. For example, in 1-dimension the 

correlation decays exponentially and the correlation length, in terms of modes, was shown to 

be [19] 2corN K . In the mode hyper-comb, for d = 3 below the phase-transition, the 

correlation is again decaying to zero with increasing distance, and the correlation length is 

[26] 1
(1 / )cor cN K K


  , (it corresponds to critical exponent 1  ). Therefore as 

cK K , 

corN  diverges [26], and practically reaches the maximum possible value 
corN N , but at the 

same time there is a significant increase of fluctuations [26] (most meaningfully of the modes 

phases), evidenced by having here 0i j ka  . 

4. Light pulse generation of the mode hyper-comb 

We have shown that AML at d>2 has a phase-transition to a phase-ordered mode structure. 

The high-dimensional mode connectivity overcomes the entropy randomizing force in the 

free energy, yielding a transition to an ordered mode-phase structure with enhanced resistance 

against noise, just as it happens in thermodynamics for interacting particles in solids and 

magnetic spin systems. In the time domain, the robust phase ordered mode-comb then gives 

ultimately short pulses that can use very broad frequency bandwidths. Below the phase 

transition or for 2d  there is no global ordering but a finite correlation length. 

Experimentally, the correlation and mode-ordering in the comb is measured in the time 

domain. In atomic and spin systems the parallel measurement is of electromagnetic-wave or 

neutron scattering [26]. We saw that for 
c

K K  the correlation extends to the whole system 

and its magnitude increases with K. Therefore, the pulse captures the full frequency 

bandwidth of all N modes, resulting in an ultimate pulse-width 
0

2 / ( )pulse N   . However, 

even where 0i j ka    the correlation makes the laser generate pulses. In 1-dimensional 

comb it is limited to 
0 0

2 / ( ) / ( )pulse corN K     . (The pulse shape was shown to be there 

Lorenzian [19], similarly to the scattering angle experiments for particles and spins [26], 

resulting from the assumption of flat spectral filtering and gain profiles.) For d>2, even below 

the phase-transition, as cK K  the correlation length diverges, meaning that already at cK  

it extends to the whole system. Nevertheless, at this stage the mode system is accompanied by 
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strong fluctuations [26] that affect the pulses. Above the phase-transition, the fluctuations are 

depressed as K  increases beyond 
cK , and therefore the pulses can be optimal. This is the 

important result obtained by the multi-dimensional AML mode hyper-comb. The phase-

transition presence occurring at d>2 makes the system fall into an ordered phase, regardless 

the noise, and therefore produce pulses that use the full frequency bandwidth. It is in contrast 

to 1-dimensional combs that are fragile due to even weak noise. Their correlation length still 

increases with .., but in a gradual way. 

In the mode hyper-comb we have to be careful how to transform the inter-mode distances 

to frequencies, and then to the time domain, since the above correlation lengths are given in 

terms of number of modes. For the pulse-width we take the largest correlation length in terms 

of frequency bandwidth, which is along the d axis (i = d, in the folding procedure of the 

hyper-comb construction). 

The pulse rate issue is also interesting. Despite taking for the pulse-width the d axis mode 

separation, which is the largest difference in terms of frequency, the closest near-neighbor 

modes (along the first axis) remain coupled and dominate the pulse rate. Therefore, there is a 

basic difference between the hyper-comb and 1-dimensional AML with only one high 

harmonic modulation, say the highest one in the hyper-comb (
0d d

m   ). In a hyper-comb at 

cK K , all modes along all axes are coupled and ordered, and the full bandwidth generates 

pulses at the fundamental rate 
1 0

    of a single oscillating pulse in the cavity. Another way 

to realize that is in the time domain. Pulses are generated near the global minimum (in loss 

terms, or maximum in transmissivity terms) of the overall applied modulation waveform (the 

sum of all frequencies). It usually consists of one or two closely spaced minima, at or near the 

global minimum of the basic modulation frequency. Therefore, we will have one pulse 

oscillation (“singlet” or “doublet”) at the basic frequency rate 
1 0

   . In a regular single 

high (md) harmonic frequency modulation, however, we have multi-pulse oscillation with a 

rate 
0d d

m   . Then the coupling is only between modes spaced md modes apart, thus 

having md interleaved sub-combs (“supermodes” [28]), usually without phase coupling 

between them [28], resulting in non-optimized pulses. 

We turn to quantity sides. It was noted [19] that for the 1-dimensional AML comb, weak 

noise, even spontaneous emission, can destabilize the phase alignment of long mode chains, 

and therefore the mode-correlation length 
0

2 2 /
cor

N K AP W  is limited. ( 2W NT is the 

total noise power in the frequency band). For example, in an erbium-doped fiber laser, with a 

cavity length of 100m that gives 6

0
/ 2 2 10 Hz    ( 1.5n  ), and a modulation power over 

total noise ratio 
0

/ 50K AP W   we have 100corN  , and 9~10 secpulse  . In the hyper-comb 

for that K the laser lies deeply in the ordered phase (for 3d  , 0.505cK  .) Then the pulse-

width is given by the full frequency bandwidth. Taking for it 13
10 Hz , gives 5~ 5 10N  , and 

13
10 sec~pulse

 , comparable to what is obtained by PML in erbium-doped fiber lasers. 

Larger bandwidths in various lasers can lead to femtosecond pulses. 

5. Hyper-comb size 

The hyper-comb mode length along its n axis is given by 1 /n n nN m m  for 1,...( 1)n d  , 

and /
d d

N N m , where 
1 2 d

N N N N      is the total number of modes in the lattice. The 

formal thermodynamic limit requires ,
i

N N  . In experiments, the hyper-combs will 

have a finite size (finite iN ), depending on the available bandwidths and the possibility to 

use high harmonic modulation. In various lasers it can be realistic to have 20-100 modes in 

each dimension, that can already be regarded as a many body system [19,20]. For example, in 
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fiber lasers with lengths of (100-1000)m, the modulation can start with sub 6
10 Hz  for the 

basic frequency and easily reach 10~ 4 10 Hz  for the third one. It can give a 199 × 199 mode 

square lattice or 33 × 33 × 33 mode cube. We note that the folding procedure eliminates the 

bond(s) at the boundary between segments (arrays), but for such sizes it doesn’t have a 

significant effect on the calculation. We also note that since phase-transition occurs in the 

spherical model at d>2, we can expect that in 2-dimensional mode-combs, only a few 

additional layers in the third dimension can be sufficient for getting a phase-transition to the 

phase-ordered comb. 

6. Conclusion 

We have presented a unique d-dimensional AML mode-comb with nearest-neighbor mode-

coupling, mapped to the exactly soluble spherical model of spins in statistical mechanics. It 

changes the nature of AML due the phase-transition, providing pulses at the basic cavity rate 

that can optimally use large frequency bandwidths of lasers. It thus solves an inherently weak 

side of AML compared to PML, while benefitting from its active modulation properties. We 

finally note that although the spherical model is exactly soluble in all dimensions, it is usually 

regarded as unphysical because of the unusual constraint on the overall spin value. The AML 

laser therefore offers a rare experimental realization of the model. 
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