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Spectral sidebands and multipulse formation in passively mode-locked lasers
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Pulses in passively mode-locked lasers are often accompanied by dispersive waves that form spectral sidebands
due to spatial inhomogeneities in the laser cavity. Here we present an explicit calculation of the amplitude,
frequency, and precise shape of the sidebands accompanying a solitonlike pulse. We then extend the study to
the global steady state of mode-locked lasers with a variable number of pulses, and present experimental results
in a mode-locked fiber laser that confirm the theory. The strong correlation between the temporal width of the
sidebands and the measured spacing between the pulses in a multipulse operation suggests that the sidebands
have an important role in the interpulse interaction.
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I. INTRODUCTION

Short pulses that scatter from periodic spatial inhomo-
geneities in a dispersive medium emit radiation that interferes
constructively at resonant frequencies, forming spectral side-
bands, sometimes called Kelly sidebands [1]. Several papers
[1–3] studied the formation of dispersive waves by solitons and
their propagation in optical fibers with periodically spaced
amplifiers. The same mechanism leads to the formation
of sidebands in mode-locked lasers, where inhomogeneities
in the cavity act periodically on the pulse. Sidebands can
also be generated by periodic perturbations of cw [4,5].
The latter type of sidebands arise because of a four-wave-
mixing-induced modulational instability, in contrast with
the linear resonance responsible for the Kelly sidebands.
Recently, sidebands induced by modulational instabilities
were also discovered in mode-locked lasers that, unlike
Kelly sidebands, occur only beyond a threshold pumping
intensity [6].

When the peak power of a single pulse exceeds that
of maximal transmissivity, the steady state of a passively
mode-locked laser tends to bifurcate into configurations where
two or more pulses run in the laser cavity simultaneously [7].
Since the early experiments that demonstrated multipulse
mode locking [8–10], it has been observed that the pulses
display a very rich dynamics, often forming bunches, as a
consequence of complex interpulse interactions. The inter-
est in the dispersive waves in mode-locked lasers, beyond
their prominent effect on the pulse shape, arises because
they have often been suggested as a means of interpulse
interaction in multipulse mode-locked lasers [11–14]. Here,
we focus on the steady-state structure of the dispersive
waves and the corresponding Kelly sidebands formed by the
radiation emitted from the pulses in multipulse mode-locked
lasers.

The peak clamping leading to multipulse steady states is
often modeled by adding a quintic term to the equations of
motion. In former papers [15,16], we applied the statistical
light-mode dynamics (SLD) theory to this system, and showed
that multipulse mode locking is, in effect, a series of first-

order phase transitions. SLD uses the methods of statistical
physics to analyze the dynamics of the interacting many-body
light-mode system at an effective finite temperature generated
by cavity noise [17–19]. Here, we apply the SLD gain
balance method [20] to derive the multipulse steady states
with dispersive waves of mode-locked lasers with cavity
inhomogeneities.

Our theoretical analysis is based on the master equation of
mode-locked soliton lasers [21,22], with an additive noise term
[23], where the inhomogeneities in the cyclic light propagation
in the cavity are modeled by a periodic modulation of the gain
and the saturable absorption. We first study the sidebands in
a single-pulse steady state and show that, unlike free fiber
sidebands, the mode-locked-laser sidebands reach a steady
state with a well-defined bandwidth and a Lorentzian shape;
in real time, the dispersive waves form a wide pedestal with
exponentially decaying tails. In particular, we demonstrate
how the overall phase of each sideband depends on the relative
phase of the gain and loss modulations. The theory is firmly
supported by experimental observations in mode-locked fiber
lasers.

Next, we derive a nonlinear equation for the global steady
state of the laser, which includes a number of pulses and
their accompanying pedestals, by applying the gain balance
principle to the pulses, sidebands, and cw components of
the waveform. We find that the sideband intensity and the
pedestal width increase by a large factor when the pumping is
increased with a constant number of pulses, and then decrease
abruptly when another pulse is formed, so the properties of
single-pulse sidebands display an oscillatory, approximately
periodic, dependence on the pump power. These theoretical
results are again favorably compared with experiments in
a mode-locked fiber laser. We conclude by considering the
implication of our results on the nature of sideband-mediated
interactions.

II. THEORETICAL MODEL

The mode-locking master-equation model for soliton lasers
[21,22,24], where the dominant dynamical processes are
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chromatic dispersion and Kerr nonlinearity, takes the form

i∂zψ = −∂2
t ψ − 2|ψ |2ψ + ipg(z)g[ψ]

(
ψ + γ ∂2

t ψ
)

+ ips(z)(s(|ψ |2) − l)ψ + �(z,t). (1)

The first two terms on the right-hand side are the aforemen-
tioned dispersion and Kerr nonlinearity, the coefficients of
which are nondimensionalized by an appropriate choice of
units of time and power. The next term models the saturable
gain of the laser amplifier. g[ψ] is the overall gain coefficient,
and the square brackets signify that g depends on the entire
waveform ψ(t) rather than the instantaneous value of ψ only,
and γ is the coefficient of parabolic spectral filtering. We will
assume that the the gain saturation is slow compared to the
cavity round-trip time tR , so g is determined by the overall
power P = ∫ tR/2

−tR/2 |ψ |2dt in the usual manner:

g[ψ] = g0

1 + P/Ps

, (2)

where g0 and Ps are the small signal gain and the saturation
power, respectively.

The next term on the right-hand side of the master equation
models the fast saturable absorber with transmissivity s(|ψ |) −
l, where l is the small signal loss and s(0) = 0 by definition.
We do not assume a particular form for the transmissivity
function other than that it increases linearly at zero, s ′(0) > 0.
We assume, for simplicity, that the saturable absorber accounts
for all the losses in the cavity. The final term is a Gaussian white
noise source with covariance

〈�∗(z,t)�(z′,t ′)〉 = 2T δ(z − z′)δ(t − t ′), (3)

where the constant T is the rate of internal and injected noise
power. As mentioned above, the noise is a significant factor
in the determination of the steady state; we conjecture that
it is also an essential ingredient in the interpulse interaction.
The sidebands are formed by the spatial inhomogeneity of the
gain and loss processes in the laser, described by pg(z) and
ps(z), respectively, which are periodic functions of the cavity
round-trip length L, normalized to 1

L

∫ L

0 dzpg,sdz = 1.
The dominance of the dispersive effects means that the gain

and loss terms in Eq. (1) are proportional to a small parameter,
and that the noise term is proportional to an independent
small parameter. In spite of their smallness, the gain, loss, and
noise are the crucial terms for the mode-locking phenomena
discussed here. At the same time, they also perturb the pulse
properties that are dominated by the dispersive terms; these
small perturbations will be neglected.

III. SINGLE-PULSE SIDEBANDS

We begin our analysis assuming conditions under which
there is a single pulse in the cavity with fixed parameters
in the steady state. Since the dominant terms in the master
equation are the dispersion and Kerr effect, the pulse waveform
is approximately that of a nonlinear Schrödinger (NLS)
soliton. Solitons are defined by four parameters: amplitude
a, frequency, timing, and phase. The gain and loss terms in the
master equation fix the frequency to zero, and we can set the

timing and phase to zero by an appropriate choice of origin,
so the soliton waveform is

ψp(t,z) = a sech(at)eia2z. (4)

The soliton waveform ψp is not an exact solution of the
master equation because of the gain, loss, and noise terms. We
therefore look for a solution of the form

ψ(t,z) = ψp(t,z) + ψb(t,z) + ψc(t,z), (5)

which, in addition to the pulse waveform, consists of the
sideband waveform ψb generated as a result of scattering of the
pulses off the cavity inhomogeneities, and the continuum ψc

generated by the cavity noise. The three waveform components
have different characteristic time scales: the sidebands are
narrow resonances, the temporal width of which is, as shown
below, inversely proportional to the gain-loss small parameter.
This width is large compared with the pulse width, but small
compared with the cavity round-trip time, i.e., the scale of the
continuum.

Both ψb and ψc have low peak power and can therefore
be analyzed by the linearized master equation, although their
total power

∫
dt |ψb|2,

∫
dt |ψc|2 can be of the order P . The

effect of noise is negligible on ψb, which therefore satisfies
the equation

∂zψb = i
(
∂2
t ψb + 4|ψp|2ψb + 2ψ2

pψ∗
b

)
+pg(z)g[ψ]

(
1 + γ ∂2

t

)
(ψp + ψb)

+pp(z)(s(|ψp|2) − l)(ψp + ψb). (6)

The right-hand side of Eq. (6) retains terms that are of higher
order of smallness than ψb; these terms are, in effect, not
negligible for |t | � a where ψp is itself small, and play a
crucial role in the shaping of the sidebands, as shown below.

The discrete modes of the real linear Eq. (6) express
small variations of the pulse parameters [23,25], while ψb,
which consists of radiation emitted by the pulse, is a linear
combination

ψb(t,z) = eia2z

∫
dω

2π
[αω(z)uω(t) + αω(z)∗vω(t)∗] (7)

of the first component of the scattering states of the linear
operator L,

L

(
uω

vω

)
= [−(i + gγ )ω2 − ia2]

(
uω

vω

)
, (8)

L

(
v∗

ω

u∗
ω

)
= [(i − gγ )ω2 + ia2]

(
v∗

ω

u∗
ω

)
, (9)

which acts on two-component wave functions as

L =
(

A B

B∗ A∗

)
(10)

with

A = (i + gγ )∂2
t − ia2 + 4ia2sech2(at) + s[a2sech2(at)]

and B = 2iasech2(at). It will be argued below that we can
approximate the space-dependent linear operator acting on ψb
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in Eq. (6) by its space average L. Within this approximation,
the coefficients defined in Eq. (7) evolve according to

∂zαω = [−(i + gγ )ω2 − ia2]αω + (gαω + βgω)pg(z)

+ (−lαω + βsω)ps(z), (11)

where βg and βs are the expansion coefficients of the
forcing terms g(1 + γ ∂2

t )[a sech(at)] and {s[a2sech2(at)] − l}
asech(at), respectively. As usual, the expansion coefficients
are extracted by the inner product with the adjoint eigenfunc-
tions defined by

L†
(

ūω

v̄ω

)
= [(i − gγ )ω2 + ia2](ω2 + a2)

(
ūω

v̄ω

)
, (12)

L†
(

v̄∗
ω

ū∗
ω

)
= [−(i + gγ )ω2 − ia2]

(
v̄∗

ω

ū∗
ω

)
(13)

normalized so that∫
dt[ūω(t)∗uω′(t) + v̄ω(t)∗vω′(t)] = 2πδ(ω − ω′), (14)

∫
dt[v̄ω(t)uω′(t) + ūω(t)vω′(t)] = 0. (15)

Since, by assumption, the dispersive terms are dynamically
dominant, the eigenfunctions of L are close to the eigenfunc-
tions of the linearized NLS equation [26]

uω(t) = eiωt

(
1 − 2iωe−at

(ω + ia)2
asech(at) + a2sech2(at)

(ω + ia)2

)
,

(16)

vω(t) = eiωt a
2sech2(at)

(ω + ia)2
, (17)

ūω(t) = a
(ω + ia)2

(ω − ia)2
u−ω(−t), (18)

v̄ω(t) = −a
(ω + ia)2

(ω − ia)2
v−ω(−t), (19)

so that

βgω = a

2π

(ω + ia)2

(ω − ia)2

∫
dt

(
1 + γ a2∂2

θ

)
a sechθ

× e−iωt

(
1 − 2iωe−atasech(at) + a2sech2(at)

(ω + ia)2

)
,

(20)

βsω = a

2π

(ω + ia)2

(ω − ia)2

∫
dt{s[a2sech2(at)] − l}asech(at)

× e−iωt

(
1 − 2iωe−atasech(at) + a2sech2(at)

(ω + ia)2

)
.

(21)

The solution of Eq. (11) is

αω(z) =
∫ z

dz′e[−ω2(i+gγ )−ia2](z−z′)

× e
∫ z

z′ dz′′[gpg (z′′)−lps (z′′)][βgωpg(z′) + βsωps(z
′)]. (22)

As observed by Gordon and Kelly [1–3], the amplitudes αω

are driven resonantly if the nonlinear frequency shift a2 +
ω2 is an integer multiple of the cavity-based wavelength 2π

L
;

spectrally, therefore, the dispersive waves contain a discrete
set of sidebands at frequencies ±ωn:

ωn =
√

2π

L
n − a2, n = 1,2, . . . . (23)

The nth sideband is forced mainly by the nth harmonic of
the gain and loss modulation functions pg,l , but also by the
z dependence of the gain and loss terms in the exponent in
Eq. (22). The latter modulation is small, however, if we make
the simplifying assumption that the total net loss per round
trip is small, so the z′ integration in Eq. (22) is effective over
many round trips. This is the usual assumption underlying
the Haus master equation [21] and is also consistent with
the relative weakness of the gain and loss processes in the
dynamics dominated by the chromatic dispersion and Kerr
nonlinearity that is studied here.

In this case, the mean net loss in the z′′ integration in Eq. (22)
dominates over the variable parts of the gain and loss, and
the latter may be neglected. The same assumption justifies the
approximation of the time-dependent linear operator in Eq. (6),
the equation of motion for ψb, by the fixed operator L that was
used to derive Eq. (11).

It now follows that the dispersive wave amplitudes are

αω(z) =
∫ z

dz′e[−i(a2+ω2)+g(1−γω2)−l](z−z′)

× [βgωpg(z′) + βsωps(z
′)] (24)

and defining the nth Fourier components p̃g,n and p̃s,n of pg

and ps , respectively, the coefficients of the nth sideband in the
steady state are

αω,n(z) = (p̃g,nβgω + p̃s,nβsω) e− 2π
L

inz

l + g(γω2 − 1) + i
(
ω2 − ω2

n

) . (25)

We wish to characterize the sidebands by their ordinary
Fourier spectrum, obtainable from Eq. (7),

ψ̃bn(ω,z) = eia2z

∫
dω′

2π
[αnω′(z)ũω′ω + αn,ω′ (z)∗ṽ∗

ω′ω], (26)

where ũω′ω = ∫
dt e−iωtuω′(t), and ṽω′ω is defined similarly.

As a transform of a rapidly varying function, ũ is wideband
(its ω bandwidth for fixed ω′ is comparable with the soliton
bandwidth), but it is also singular for ω = ω′. The smooth part
of ũ generates a small deformation of the soliton waveform
in Eq. (26), which is unimportant for the present purpose of
characterizing the sideband spectrum. We therefore focus on
the singular part ǔω′ω of ũω′ω, which is determined by the ±∞
asymptotes of uω′ [see Eq. (16)] to

ǔω′ω = 2π
ω2 − 1

(ω + ia)2
δ(ω − ω′) + 4ωa

(ω + ia)2
P

1

ω − ω′ , (27)

where P denotes principal part. v̌ω′ω = 0 since vω(t) tends to
zero exponentially for t → ±∞.
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FIG. 1. Measured spectra of the soliton and its sidebands,
showing the notch formation. The two figures correspond to two
measurement locations in the same cavity that are separated by one
quarter of cavity length. These measurements agree well with the
theory.

Now we can carry out the ω′ integration in Eq. (26) and
obtain the spectrum of the nth sideband

ψ̃b,n(ω) = (p̃g,nβgω + p̃s,nβsω) ei(a2− 2π
L

n)z

l + g(γω2 − 1) + i
(
ω2 − ω2

n

) . (28)

The spectral width (half width at half maximum) of
the sideband is given by δω = [l + g(γω2

n − 1)]/2ωn � 1;
temporally, therefore, the dispersive wave is a pedestal of fre-
quency ωn with an exponentially decaying envelope centered
at the pulse, the decay time scale of which is much wider than
the soliton width.

Experimentally, the sidebands appear as a series of sharp
peaks in the pulse spectrum on the background of the wide
soliton spectrum (see Fig. 1). A distinctive feature of the
sideband spectrum (28) is the dependence of the overall phase
of the sideband on the measurement position in the cavity; as a
consequence, the sideband spectrum interferes constructively
or destructively with the soliton spectrum, depending on the
placement of the output coupler, exhibiting a sharp notch
feature for some placements as the result of destructive
interference. Figures 1 and 2 show the comparison between
the measurement and calculation of the soliton and the first
two sidebands’ spectrum for two cavity positions. The good
agreement between theory and experiment, and the fact that
the sidebands are observed for all pumping strengths that
allow mode locking, demonstrate that these are indeed Kelly
sidebands The main qualitative discrepancy between theory
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FIG. 2. Theoretical calculation of the pulse and sideband
spectrum with a = 1,g = 0.1,γ = 0.01,l = 0.11,s = 0.1(|ψ |2 −
|ψ4|),tRT = 10−3,L = 2.56,p̃g = eiπ/2, and p̃s = eiπ . The cavity
position in the left figure is z = L/5, and in the right is z = 0.

and experiment is the asymmetry between the left and right
sidebands, which is lacking in the theory. The most likely
source of this asymmetry is the asymmetry of the spectral net
gain curve with respect to the band center [27] and the resultant
frequency pulling [28], which are not included in our model
for simplicity.

IV. THE CONTINUUM COMPONENT

The continuum ψc is the dominant component of the
waveform for most of its temporal extent, where both ψp(t)
and ψb(t) are negligible. Therefore, the nonlinearity and
interaction with the pulses are unimportant for its dynamics,
and it is natural to express it in terms of the ordinary Fourier
modes ψ̃c(ω) that satisfy

∂zψ̃c= − iω2ψ̃c + pg(z)g(1 − γω2)ψ̃c−ps(z)lψ̃c + �̃(ω,z).

(29)

Because the noise and continuum extend throughout the
entire round-trip time, we must use discrete frequencies to
label their Fourier transform. It then follows from Eq. (3) that
�̃(ω,z) = ∫

dte−iωt�(t,z) has zero mean and correlation func-
tion 〈�̃(ω,z)�̃∗(ω′,z′)〉 = 2T tRδ(z − z′)δω,ω′ . The solution of
Eq. (29) is similar to that of (22), and, by the same arguments
that lead to Eq. (24), we again approximate the integrand in the
exponent by its mean value. The resulting expression implies
that 〈ψ̃c(ω)〉 = 0 and

〈ψ̃c(ω)ψ̃∗
c (ω′)〉 = tRT δω,ω′

l + g(γω2 − 1)
. (30)

V. GAIN BALANCE AND MULTIPULSE SIDEBANDS

In the analysis presented so far, the pulse parameters and
the overall saturated gain g were assumed fixed and given.
In the steady state, these are variables determined along with
the number of pulses as a solution of the optical equation of
motion [Eq. (1)]. Since the equation of motion is random,
the result is a statistical steady state. In previous works
[19,20], statistical light-mode dynamics (SLD) theory was
used to study this problem and applied to multipulse mode
locking in [15,16]. The global mode-locking analysis deter-
mines, in particular, the properties of the sidebands, and in this
way allows us to reach our goal of describing the width and
power of the sidebands as a function of the laser parameters.

Here we study the statistical steady state by the gain balance
method, deriving equations of motion for the power in the three
components of the optical waveform, that is, the power Pp in
the pulse waveform that comprises zero or more pulses, the
sidebands power Pb, and the continuum power Pc. The three
waveform components are characterized by well-separated
time scales, and the total power can therefore be calculated as
a sum of the powers of the individual components. One looks
for a steady state where the three components are subject to the
same saturated gain, and finally the gain itself is determined
self-consistently from Eq. (2).

We will assume that the multipulse waveform is of the
simplest kind [15], which is also the most commonly observed
experimentally, consisting of k pulses of equal amplitude a. In
the equation of motion for the pulse amplitude, we may neglect
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the noise term in the master equation, and use the results of
soliton perturbation theory [3,29] to write

da

dz
= Re

∫
dt ψ∗

p

{
gpg(z)

(
1 + γg∂

2
t

)
ψp

+ps(z)[s(|ψp|2) − l]ψp

}

= 2gpg(z)a

(
1 − γ

3
a2

)
+ ps(z)[2sa(a) − 2l]a, (31)

where

sa(a) = 1

2a

∫
s[a2sech2(at)]a2sech2(at) dt. (32)

The pulse amplitude changes periodically during its propaga-
tion in the cavity; for our purposes, we need the mean pulse
amplitude ā(z) = 1

L

∫
a(z + z′)dz′. Under the assumption of

weak gain and loss processes, the dynamics of ā is obtained by
the space average of Eq. (31), which gives in the steady state

g

(
1 − γ

3
ā2

)
− l + sa(ā) = 0. (33)

This equation, together with Pp = 2kā, determines the pulse
part of the gain balance.

Next, we calculate the power carried by the pedestals of
the pulses. Each pulse generates a series of sidebands of the
form given by Eq. (28). The sidebands power is dominated by
the leading n = ±1 sidebands; since the different pulses that
act as sources for the sidebands are not phase locked, we treat
them as incoherent sources, and accordingly calculate the total
sidebands power as the sum of the individual sideband powers.
The resulting expression is

Pb = k

∣∣p̃g,1βgω1 + p̃s,1βsω1

∣∣2

2ω1
[
l + g

(
γω2

1 − 1
)] . (34)

Finally, the mean power of the the continuum is not changed
by the presence of the sidebands, and is therefore given by the
expression derived in [30]

Pc = T tR

2
√

gγ (l − g)
. (35)

We now substitute P = Pp + Pb + Pc into Eq. (2) and
obtain a nonlinear equation for the saturated gain g, which
is easy to solve numerically. Once we know the value of g,
we obtain the steady-state solution of the entire waveform.
The steady-state equation can have several solutions with
different numbers of pulses k. In such cases, the laser
waveform can exist in several states [15,16] in a similar manner
to the existence of metastable phases in thermodynamic
systems undergoing first-order phase transitions. The laser
then exhibits hysteresis; its actual state depends on the
history.

Figures 3 and 4 show the results of the calculation as
the small signal gain g0 is varied. For very low gain, the
waveform is pure continuum, and its energy increases with
the gain. When g0 is increased beyond a certain threshold,
a pulse forms and along with it also a dispersive wave.
Because of gain saturation, the net gain must abruptly decrease,
and along with it also the continuum component. Further
increase of g0 will mainly increase the sidebands and the
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FIG. 3. (Color online) The theoretical calculated values of the
sidebands peak intensity, width, and total power Pb along with the
saturated gain coefficient g as a function of the small signal gain
g0. The same parameters as in Fig. 2 were used in the calculation,
except that γ = 10−3 and Ps = 1. Two noise injection rate values are
shown: T = 10−3 in the continuous black line and T = 3 × 10−3 in
the dashed red line. The number of pulses is indicated. All values are
given in natural soliton units.

continuum components, and slightly change the pulse ampli-
tude, until the second threshold is met; then, the continuum
as well as the sidebands’ power abruptly decrease again.
This process then continues periodically when further pulse
creation thresholds are reached. In addition, as the pumping
is increased between pulse creation thresholds, the saturated
gain increases, so the net loss decreases and the sidebands
become spectrally narrower and, accordingly, temporally
wider.

The theoretical predictions of the global sideband charac-
teristics agree well with experimental observation summarized
in Fig. 5, made on a fiber ring laser mode locked by
polarization rotation as described in [16]. In both graphs, the
sideband width displays roughly periodic sawtooth behavior
and the total sideband energy displays a sawtooth behavior
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FIG. 4. (Color online) The theoretical calculated values of the
total pulse power Pp and continuum power Pc as a function
of the small signal gain g0. The same parameters are used as in
Fig. 3. The number of pulses is indicated. All values are given in
natural soliton units.
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FIG. 5. The measured sideband spectrum characteristics: peak
power (in arbitrary units), spectral width, and total energy (in arbitrary
units), and the distance between adjacent pulses in states with two or
more pulses.

with an increasing linear bias. There is somewhat worse
agreement in the peak intensity, but this quantity is sensitive
to interferometric enhancement and reduction as explained
above.

In both theory and experiments, the spectral width of the
sidebands narrows with increasing pumping between pulse
creation thresholds, implying a temporal widening of the

pedestals. This widening shows a striking correlation with
the increase of the interpulse distance, suggesting that the
sidebands play a role in the interpulse interactions [12,13].

VI. CONCLUSIONS AND OUTLOOK

We presented a fundamental theory of the formation of
sidebands and their effect on the statistical steady state in
multipulse mode-locked soliton lasers, which explains the
main experimental observations, including the dependence of
the sideband spectrum on the measurement position in the
cavity, the growth of the sideband energy and temporal width
when pumping is increased, and the abrupt attenuation of the
sidebands when a new pulse is created in the cavity. We also
found strong correlations between the temporal width of the
sidebands and the spacing between adjacent pulses in pulse
bunches, giving further evidence for the role of the sidebands
in interpulse interaction. However, the most natural conclusion
from our observation is that the sidebands generate repulsive
interactions, and that additional attractive interactions are
needed to explain the ubiquitous formation of pulse bunches.
Moreover, the phase and timing jitter of the pulses leads us
to conjecture that the mechanism of interaction is incoherent.
We postpone the in-depth study of these questions to a future
publication.
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