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We propose and experimentally demonstrate a method for fiber dispersion measurement based on the
modulation of laser pulses stretched by the fiber under test. The measured spectrum of the modulated pulses is
the result of the interference between the stretched pulse spectra shifted by the modulation harmonics. The
interference pattern is processed as in Fourier transform spectral interferometry. Unlike to conventional spectral
interferometry, environmental conditions do not affect the interferogram due to the lack of any interferometer;
additionally, large dispersions can be characterized by themethod proposed. Its high accuracy is demonstrated in
experimental comparison with the widely used phase shift technique.
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1. Introduction

The chromatic dispersion of optical fiber is one of the key factors for
designing long-haul high-speed optical communication systems. The
managementof thedispersion requires fast and accuratemeasurements
over a wide spectral range not only of the first order but also higher
orders of dispersion. A variety of techniques for dispersion measure-
ment were developed [1]. The phase shift between the beating of the
modulation sidebands and the reference signal ismeasured in the phase
shiftmethod [2]. The shift is approximately equal to tgr(ω)ωm, whereωm

is the modulation frequency and tgr(ω) is the frequency dependent
groupdelay of thefiber under test. The phaseφ(ω) acquired by light in a
dispersive element can also be exactly obtained by such experiments
[3]. The amplitude response for the swept modulation frequency was
also used to give the first-order dispersion [4]. These techniques are
suitable for characterization of large dispersions with temporal
resolution on the order of picoseconds. Determination of group delay
from measurement of the optical path length in an interferometer [5]
can provide a resolution up to 0.1 fs [6], but it is only applicable to short
fibers. All of these methods need the scanning of the wavelength, and
therefore require a longdata acquisition time. The pulsedelay technique
[7]with supercontinuumpulses spectrally sliced by anetalon provides a
fast measurement over a wide spectral region [8], but the possible
temporal resolution is limited in this case by the response time of a
photodiode and an oscilloscope.

In spectral interferometry [9–11], the spectrum of the light passed
through an interferometer is analyzed by a spectral device [9–15] or by
scanning of the wavelength of a laser source [16,17]. The dispersive
element to be tested is placed in the signal armof an interferometer. The
fiber dispersion was also measured by spectral interferometry in the
temporal domain [18]. The temporal interference pattern, acquired by
an oscilloscope, gave a spectral interferogram using the linear
relationship between the temporal and spectral scales for pulses
propagating in long fibers. The phase difference between the signal
and reference lights can be obtained from the measured spectral
interferogram by using Fourier transform technique [11–13,17,18], by
determining the positions of maxima and minima of the interference
pattern [14,15] or measuring the shift of the interferogram for different
delays [15]. The advantages of spectral interferometry applied for
dispersion measurements are high accuracy and the ability to perform
fast measurements of interferograms. However, it is only suitable for
short optical fibers. For instance, the lengths of the tested fibers in
[9,14,15]) were of about 1 m. The technique based on swept-
wavelength spectral interferometry [17], used in the Optical Vector
Analyzer (Luna Technologies), allows increasing the fiber length up to
150 m and provides dispersion measurement with a rate of 30 ms/nm
and an accuracy of 5 ps/nm. The additional drawback of conventional
spectral interferometry is that the measurement results are extremely
sensitive to environmental conditions. An improvement was obtained
by using self-tracking interferometry that reduced the phase drift in an
interferometer from 1.33 π to 0.04 π [16].

http://dx.doi.org/10.1016/j.optcom.2010.06.003
mailto:chrberg@techunix.technion.ac.il
http://dx.doi.org/10.1016/j.optcom.2010.06.003
Unlabelled image
http://www.sciencedirect.com/science/journal/00304018


3954 N.K. Berger et al. / Optics Communications 283 (2010) 3953–3956
In the present paper, we propose and experimentally demonstrate
a novel method for dispersion measurement based on modulating
laser pulses that pass the fiber under test and the measurement of the
spectrum of the modulated pulses. Our method is similar to shearing
spectral interferometry used for optical pulse characterization [10], in
which the phase difference Δφ(ω)=φ(ω)−φ(ω−Δω)≈φ ′(ω)Δω
between the pulse spectrum and its shifted replica is measured, where
Δω is the frequency shift and φ ′(ω) is the derivative of the spectral
phase. We show that the measured spectrum of the modulated pulses
can be regarded as resulting from the interference between the
spectra of the stretched pulses shifted by the modulation harmonics.
The information on the fiber dispersion is extracted by the method
used in Fourier transform spectral interferometry [11]. As we do not
use an interferometer for the implementation of spectral interferom-
etry, this technique is less sensitive to variations of environmental
conditions. Measuring the phase difference Δφ(ω) (instead ofφ(ω))
allows us to test fibers with large dispersions. The magnitude of the
measured dispersions can be readily tailored by the proper choice of
the modulation frequency.

2. Measurement principle

In our dispersion measuring method, a short laser pulse is first
stretched by the dispersive element under test (in our work — an
optical fiber) and then temporally modulated by an intensity or phase
modulator, synchronized with the laser pulse. We emphasize that in
our technique, unlike others, the RFmodulation is performed after the
light passes the fiber. The spectrum of the modulated pulse is
measured by an optical spectrum analyzer (OSA).

We represent the spectral phase acquired by the pulse propagating
in the dispersive element as the sum of the quadratic component (first-
order dispersion) and the non-quadratic component φnq(ω) (higher-
order dispersion). Then the spectrum at the output of the tested fiber
can be written as

FoutðωÞ = FinðωÞ exp½−iβ2Lω
2
= 2 + iφnqðωÞ�; ð1Þ

where Fin(ω) is the spectrum of the input laser pulse, β2 and L are the
group velocity dispersion coefficient and the length of the tested fiber,
respectively. The complex amplitude of the modulated pulse can be
written as

EmodðtÞ = fmodðtÞEoutðtÞ = EoutðtÞ ∑
N

n=−N
cn expðinωmtÞ; ð2Þ

where Eout(t) is the complex pulse amplitude at the output of the
tested fiber and the periodic modulation function fmod(t) is expanded
into the Fourier series with the coefficients cn, 2N+1 is the number
of nonzero modulation harmonics. It is important to emphasize
that our derivation is equally valid for any kind of modulation: am-
plitude, phase or amplitude-phase modulation. The Fourier transform
of Eq. (2) gives the expression for the field spectrum of the modulated
pulse

FmodðωÞ = ∑
N

n=−N
cnFoutðω−nωmÞ: ð3Þ

It can be seen from Eq. (3) that the spectrum of the modulated
pulse is the weighted sum of the spectra of the stretched pulse shifted
by nωm. Unlike to conventional spectral interferometry with two
interfering spectra, there are here 2N+1 superimposed spectra.
Substituting Eqs. (1) into (3), we obtain

FmodðωÞ = ∑N
n = −NcnFinðω−nωmÞ expf−i½β2Lðω−nωmÞ2 = 2� + iφnqðω−nωmÞg:

ð4Þ
The intensity spectrum of the modulated pulse measured by an
OSA can be obtained from Eq. (4)

ImodðωÞ = jFmodðωÞ j2≈ jFinðωÞj2∑2N
s = −2NBs exp½isβ2Lωmω−isωmφnq′ðωÞ�;

Bs = ∑N
k = −Nck + sck* expf−i½ðk + sÞ2−k2�β2Lω

2
m = 2g; jk + s j≤N;

ð5Þ

where φnq ′(ω) is the derivative of φnq(ω) and the symbol * denotes
complex conjugation. In the derivation of Eq. (5), we assumed that
the spectral phase of the laser pulse is zero. Otherwise, the laser spectral
phase can be taken into account, as can be seen below. Besides, it was
assumed in Eq. (5) that Fin(ω−nωm)≈Fin(ω) and φnq(ω−nωm)≈φnq

(ω)−φnq ′(ω)nωm, since the modulation frequency in the experiment
(14 GHz) is much smaller than the full width of the pulse spectrum
(∼2000 GHz) and the number of the modulation harmonics is limited.
It can be seen from Eq. (5) that the envelope of the spectral interference
pattern is approximately the spectrum of the laser pulse |Fin(ω)|2.
This means that the fiber dispersion is measured in our method with-
in the spectral range equal to the full width Δfpul of the laser pulse
spectrum.

The factor exp(isβ2Lωmω) inEq. (5) is ananalog to the exp(iτω) term
in conventional spectral interferometry with the time delay τ between
the two arms of an interferometer. This factor describes a sinusoidal
interference pattern observed on the screen of an OSA with a distance
between the spectral fringes of Δfs=1/(sβ2Lωm). For Fin(ω) and φnq ′

(ω) that are slowly varying functions of frequency, the sinusoidal
patterns are amplitude and phase modulated. The distinction from
conventional spectral interferometry is that the spectrogram consists of
2 N sinusoidal interference patterns corresponding to the different
values of s in the sum in Eq. (5). In addition, it is important to emphasize
that the spectral interferometry is implemented in this casewithout use
of any interferometer. The spectrum measured by an OSA can be
considered, according to Eqs. (3) and (5), as resulting from the inter-
ference between the spectra of the stretched pulse shifted by nωm.

We use the same processing of an OSA spectrogram as in Fourier
transform spectral interferometry [11], performing its Fourier trans-
form. The Fourier transform,Ψmod(t), of the measured spectrum (5) of
the modulated stretched pulses can be written as

ΨmodðtÞ = ∑2N
s = −2NΨsðt−sβ2LωmÞ; ð6Þ

where Ψs(t) is the Fourier transform of the functionBs|Fin2(ω)|2 exp
[− isωmφnq ′(ω)]. It can be seen from Eq. (6) that the Fourier transform
of the spectrum measured by an OSA consists of 4 N+1 peaks spaced
approximately by the temporal interval β2Lωm. It is important in the
processing that the peaks would be separated from each other. It can
readily be made by the proper choice of the modulation frequency ωm

and, accordingly, the interval between the peaks. In the processing, we
select the sth peak Ψs(t−sβ2Lωm). From its position τs=sβ2Lωm, we
extract the value of the first-order dispersion

β2L = τs = ðsωmÞ: ð7Þ

Then we shift the sth peak by −τsto obtain Ψs(t)and calculate its
inverse Fourier transform, which gives Bs|Fin2 (ω)|2 exp[− isωmφnq ′(ω)].
Calculating the argument of the inverse Fourier transform, we obtain
−sωmφnq ′(ω). The numerical integration of the found argument gives
the non-quadratic component φnq(ω) of the fiber spectral phase. The
spectral phase φ(ω) of the tested fiber is calculated as the sum of the
quadratic component β2Lω2/2 andnon-quadratic component φnq(ω). It
is important to note that our result does not depend on the coefficients
Bs containing, according to Eq. (5), the Fourier coefficients cn of the
modulation function. Thismeans that ourmethod is equally suitable for
any kindofmodulation: amplitude, phase or even combined amplitude-
phase modulation. The depth of phase modulation determines the



Fig. 1. Schematic of the experimental setup. Solid (dotted) lines are used for optical
(electrical) signals. EDFRL, erbium-doped fiber ring laser; DCF, dispersion compensat-
ing fiber; EDFA, erbium-doped fiber amplifier; RFA, RF amplifier; Synch., synchroni-
zation; OSA, optical spectrum analyzer.

Fig. 3. Fourier transform of the spectrum shown in Fig. 2.
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number of modulation harmonics and consequently the number of the
independent measurements of dispersion obtained from one
spectrogram.

The dispersion values that can be measured by the method pro-
posed are determined from the following conditions. First, as pointed
above, the peaks in the Fourier transform of the modulated spectrum
should be separated. This implies that the temporal interval between
the peaks, β2Lωm, should be greater than the full width Δτ of the
peaks. This leads to the lower limit of the measured dispersion values

β2L≥Δτ=ωm ð8Þ

For lowdispersions,Δτ is determined by thewidth of the laser pulse.
Todecrease the lower limit for thegivenmodulation frequency,wehave
to use shorter laser pulses. Expression (7) is exact only if the envelope of
the interference pattern does not vary with frequency. For the slowly
varying envelope, the error is reduced when the number of the inter-
ference fringeswithin the envelope is increased. This number,Δfpul/Δfs,
should be greater than the fringe number N determined by the required
accuracy. Inserting the expression for Δfs, we obtain the second
condition for the lower limit of dispersion values

β2L≥N = ðΔfpulωmÞ: ð9Þ

Comparing conditions (8) and (9), we see that condition (9) is
stronger. The upper limit of dispersion values can be obtained from
the condition that the fringe width, Δfs, should be greater than the
resolution ΔfOSA of an OSA

β2Lb1= ðΔfOSAsmaxωmÞ; ð10Þ

where smaxis the maximum order of the peaks used for the dispersion
measurement. It can be seen from Eq. (10) that high dispersion values
Fig. 2. Measured spectrum of the laser pulses dispersed by the DCF and sinusoidally
phase modulated with a frequency of 14 GHz.
are unlimited because the modulation frequency can be lowered to
the required value. Only fiber losses will practically limit the
measurement of large dispersions.

3. Experimental setup and results

The experimental setup is shown in Fig. 1. A passively mode-locked
erbium-doped fiber ring laser (EDFRL) was used as the optical pulse
source. It was operated at a wavelength of ≈1550 nm and generated
≈1 ps optical pulses with a 10 MHz repetition rate. For the fiber under
test, we used 2.039 km of dispersion compensating fiber (DCF). The
laser pulses were first stretched by the fiber to be measured and then
sinusoidally phase modulated by an electro-optic modulator with a
modulation frequency of 14 GHz. The detected RF signal of 10 MHz
from the laser was used for the synchronization of an RF synthesizer
supplying a sinusoidal voltage to the modulator.

The spectrum of the modulated dispersed pulses (spectral
interference pattern) measured by means of an OSA with a resolution
of 0.015 nm is shown in Fig. 2. It can be seen from Fig. 2 that the full
width of the pattern envelope as well as of the laser pulse spectrum is
equal Δfpul≈2000 GHz. Fig. 3 shows the Fourier transform of the
spectrum presented in Fig. 2. We recorded four times the spectral
interference patterns and performed processing for the two peaks
(s=1, 2) in their Fourier transforms (see Fig. 3) as described above.
From these results we found the averaged values of β2L and the non-
quadratic component φnq(ω) of the DCF spectral phase shown in
Fig. 4. The averaged spectral phase φ(ω) was calculated as the sum of
the quadratic and non-quadratic components. If the contribution of
the spectral phase of the laser pulse is not negligible, it can be taken
into account in the following way: an additional fiber is taken and the
spectral phase difference Δφ(ω) is measured separately for each of
these fibers (one of them is the fiber under test) and for the two fibers
connected together. From the three measurements, each of the
Fig. 4. Non-quadratic component φnq(ω) of the DCF spectral phase measured by our
method.
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Fig. 5. Group delay of the DCF measured by our method (solid line) and by the phase
shift method (dashed line).
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dispersions as well as the laser pulse spectral phase can be obtained.
We verified that for our experiments the pulse spectral phase can be
neglected.

The group delay of the fiber can be found as tgr(ω)=−d φ(ω)/dω.
The averaged measured group delay of the DCF is shown in Fig. 5 as a
function of wavelength (solid line). The dispersion at the central
wavelength (λ0=1551.32 nm) averaged over eightmeasurementswas
found to be −223.2±0.3 ps/nm with a dispersion slope of −0.65±
0.02 ps/nm2. This corresponds to relative errors for the dispersion and
its slope of 1.3×10−3 and 3.1×10−2, respectively.

For testing our method, we also measured the dispersion of the
DCF by the widely used phase shift technique. We modulated the
intensity of a cw light from a tunable semiconductor laser with a
modulation frequency of 2.5 GHz and then transmitted it trough the
DCF. The detected signal was recorded with a 50 GHz oscilloscope.
The laser wavelength was scanned and the appropriate phase shift of
the oscilloscope signal, averaged over sixteen oscilloscope scannings,
was measured. We performed nine measurements and the averaged
group delay as a function of wavelength is shown in Fig. 5 (dashed
line). The averaged measured dispersion and the dispersion slope at
the central wavelength was found to be −223.1±1.2 ps/nm and
−0.48±0.11 ps/nm2, respectively. The relative errors of these two
quantities are 5.4×10−3 and 0.23, respectively.

We can see the excellent agreement between the results obtained by
the two methods. The difference between the lines in Fig. 5 does not
exceed 5.8 ps. The relative difference between the averaged dispersions,
measured by the two methods, is 4.5×10−4. However, the relative
errors of the dispersion and dispersion slope measurements for our
method are lower than what is obtained in the phase shift method by
factors of 4.0 and7.4, respectively. Thedifferencebetween themeasured
values of τ1and τ2/2 for the first and second peaks, respectively, in the
Fourier transform of the same interference pattern characterizes the
error of our method. The averaged relative difference was found to be
2×10−3, that is approximately equal to the accuracy of the spectrum
analyzer and to the relative error of the dispersion measurements. The
larger error of thephase shiftmethod canbeexplainedby three reasons:
variations of the dispersionwith time [4] due to longmeasurement time
(about half an hour for one dispersionmeasurement), inaccuracy in the
measurement of a time interval with the oscilloscope (≈7 ps), and
instability of the oscilloscope triggering.

We can estimate the lower limit of dispersion values that could be
measured in our experiments. Substituting N=5, Δfpul=2000 GHz,
ωm /(2π)=40 GHz into Eq. (9), we obtain for dispersion 9.95 ps2 or
7.8 ps/nmwhat corresponds to 70 m of the DCF used in the dispersion
measurement.

4. Conclusions

In conclusion, we have presented a method for measuring the
chromatic dispersion of optical fibers that is based on modulating
dispersed laser pulse and the measurement of its spectrum by an
optical spectrum analyzer. The experimental comparison of the
proposed and conventional methods showed excellent agreement,
but our technique provides lower errors. Its additional advantages are
simplicity and ability to perform fast measurements over a broad
wavelength range (the scanning time for an OSA is 500 ms). Unlike
conventional spectral interferometry, the technique proposed does
not employ an interferometer, and is less therefore affected by
environmental conditions. In addition, it allows characterization of
large dispersions what is important for installed fiber links.
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