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We present an experimental study of the stability of passively mode-locked pulses against noise in multipulse op-
eration of an erbium-doped fiber laser. The laser properties are determined by two dimensionless combinations of
the laser parameters. Measurements of the pulses’ destabilization threshold as a function of those laser parameters
show the optimal regions that maximize the mode-locked pulse stability. We find good agreement between the
experimental observations and the theoretical predictions. © 2010 Optical Society of America
OCIS codes: 140.3430, 140.4050.

Passive mode-locking provides, in many cases, a cas-
caded abrupt formation of pulses as the laser pumping
power increases [1,2]. Several recent theoretical and ex-
perimental studies have analyzed the mechanisms of
multipulse formation and addressed the role of different
mode-locked laser parameters [3–7]. The present work
adds to the efforts of characterization of the mode-locked
laser stability by taking into account the effect of laser
noise, within the framework of the novel statistical light-
mode dynamics (SLD) approach, which employs the
tools of statistical mechanics to analyze multimode laser
phenomena [8–15]. The SLD analysis of multipulse pas-
sive mode-locking [14] was based on rigorous mean-field
calculations in the course-grained model [9]. It was the-
oretically and experimentally shown that a multi-pulse
mode-locked laser is a thermodynamic-like system, with
the role of temperature assumed by the intracavity noise,
and with thermodynamic-like phases differing by the
number of intracavity pulses. The phases are separated
by first-order phase transition curves in the T–P plane
(where P is the total intracavity power and T is the noise
power), corresponding to the observed abrupt formation
and annihilation of pulses. It was shown [14] that, when
many pulses exist in the cavity, the individual pulse
power maintains an almost constant value, determined
by the saturation shape of the absorber transmissivity,
and the phase transition curves are approximately
equally spaced straight lines. The experimental work that
verified the SLD theory [12,13] was done in a qualitative
manner. While showing the basic phase transition beha-
vior, it did not include direct quantitative dependence on
the basic laser parameters: dispersion, gain filtering, sa-
turable absorption, and the Kerr effect, which are not
readily measured and controlled.
In the present work, we experimentally study the de-

pendence of the pulse stability on the laser parameters.
The theory is compared with experimental measure-
ments in a fiber laser, passively mode locked by the non-
linear polarization rotation (NLPR) technique. Our main
theoretical result is summarized in Eq. (3), which de-
scribes the phase transition line with n pulses. It follows
that the phase transition line slope, which gauges the sta-
bility of mode locking against noise, depends on two di-
mensionless parameters. Experimentally controlling

these parameters, we measured the pulse annihilation
cascade and obtained the experimental values of the
slopes. The experimental results are shown in Fig. 2 (be-
low) and are compared with the theoretical predictions.
As explained below, the limited accuracy of the measure-
ment amounts to a single free parameter, which was fit
simultaneously for all three curves. The results exhibit
good quantitative agreement between theory and experi-
ment over most of the parameter space; in particular, the
curve maxima that correspond to the optimal parameter
choice for pulse stability agree in theory and experiment.

The theoretical analysis is based on the Haus master
equation model (the notations and the correspondence
to [16] are discussed in [8,10]):

_ψ ¼ ðγg þ jγdÞ
∂2ψ
∂z2

þ ½jγkjψ j2 þ sðjψ j2Þ þ g�ψ þ Γ: ð1Þ

The coefficients γg, γd, and γk model the parabolic spectral
gain filtering, chromatic dispersion, andKerr nonlinearity,
respectively. sðjψ j2Þ is the transmissivity of the saturable
absorber that describes the effective action of the NLPR
[17]. Assuming that the mode locking is achieved for the
optimal selection of the NLPR parameters (i.e., the polar-
ization angles) it follows from Eq. (6) in [17] that jsðjψ j2Þj2
¼ 1

2 τ−1R ½sinðτR~γkjψ j2=ð6
ffiffiffi
2

p ÞÞ�2, where τR is the round-trip
time.Here,~γk is the effectivemeanKerr coefficient experi-
enced by the waveform inNLPR, and, as discussed below,
it is possible to decouple this parameter from the total in-
tracavity Kerr coefficient γk. Note that, in the weakly
saturated absorber limit, the transmissivity is [16,18]
sðjψ j2Þ ¼ γsjψ j2with γs ¼ ~γk=12. The cavity noiseΓ ismod-
eled as a white Gaussian noise with the autocorrelation
function hΓ�ðz0; t0ÞΓðz; tÞi ¼ 2LTδðz − z0Þδðt0 − tÞ, where
T is the noise power injection rate per mode and L is
the cavity length.

We study Eq. (1) via the gain balance method,
previously employed in the limit of a weakly saturated
absorber, where it was connected to the rigorous analy-
sis of SLD [18]. The laser waveform is described as a
combination of two parts—the short and strong pulses
and the broad and weak noise-generated continuum.
Then, for an n-pulse steady state, the total waveform
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is written as ψ ¼ P
n
i ψpðiÞ þ ψ c. We assume that the gain

is saturated on a time scale much slower than the round
trip, stabilizing the total intracavity power (energy over
the round trip) to a constant value 1

L

R
L
0 jψ j2dz ¼ P. This

power is divided between the pulses, each carrying a
fraction xi of the total power P, and the continuum, car-
rying the remaining power fraction of 1 −

P
ixi. Their dy-

namics is coupled via the amplifier gain, and the power
distribution is established by imposing an identical gain
on each of the waveform parts, due to the slow gain time
scale. As in [13,14], in the following analysis we make a
simplifying assumption that the pulses are noninteract-
ing, i.e., are sufficiently spaced, and that they are of equal
power so that xi ¼ x and

P
ixi ¼ nx.

The dynamics of the pulse waveforms is approximated
by the noiseless version of the master equation [Eq. (1)].
Guided by experimental values, we make an assumption
that the imaginary terms inEq. (1)dominate the real terms,
that is, we study the regime of solitonic pulse shaping.
Then, the steady state of the individual pulse wave-
form is as follows [16,18]: ψpðiÞ ¼ Asechðxðz − ziÞ=lpÞ exp
ðjðϕtþ φiÞÞ, where A ¼ xðPL=2lpÞ1=2, lp ¼ 4γd=γkLP, ϕ ¼
γkA2=2, andzi andφi are thepulseposition andphase shift,
respectively. The pulse power dynamics is obtained by
multiplying both sides of the noiseless equation by ψ�

p

and integrating with respect to z, which yields, in steady
state, the relation

gðyÞ ¼
ffiffiffi
2

p

4

Z∞

−∞

����sin
�

y2

6
ffiffiffi
2

p sech2ðz0Þ
�����sech2ðz0Þdz0

−
y2

6

γkγg
~γkγd

; ð2Þ

where the integration limits have been extended to infinity
since L ≫ lp, and we define the normalized pulse ampli-
tude: y ¼ ffiffiffiffiffi

~γk
p

A.
The continuum waveform has a much weaker ampli-

tude; therefore, the nonlinear term in Eq. (1) does not
contribute significantly to its dynamics, determined by
the linear terms and the noise source [18]. The continuum
power in steady state as a function of the overall net gain
has been calculated in [18], and it leads, according to the
gain balance, to the relation

ð1 − nxÞ ¼ LT

2P
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γggðyÞ

p ; ð3Þ

with gðyÞ given by Eq. (2).
It was shown in [13,14] that the pulse power in multi-

pulse mode locking remains close to a constant value x ¼
x� that satisfies the implicit relation Gðy�Þ ¼ y�gðy�Þ,
where GðyÞ ¼ R

y

0 gðy0Þdy0. Then, in the case n ≫ 1, the
number of pulses in the steady state is the solution of
Eq. (3) with x ¼ x�, y ¼ y�, rounded to the nearest inte-
ger. It follows that the phase transition curves are
straight lines in the T–P plane (see Fig. 1), whose slope
is 2

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γggðy�Þ

p
. The slope value T=P can be rendered di-

mensionless by multiplying it by L=
ffiffiffiffiffiγdp
, which then be-

comes a function of the two dimensionless parameters
—~γk=γk and γd=γg; the numerically calculated dimension-

less slope 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy�Þγg=γd

p
is shown in solid curves in

Fig. 2.
The experiment was performed in a fiber-cavity NLPR

mode-locked laser, with an Er-doped active fiber serving
as the gain medium and an external amplified sponta-
neous emission (ASE) source providing injected noise
power [13]. The NLPR method is based on the nonlinear
fiber birefringence and the transmissivity of the polariza-
tion-controller–polarizer system is fixed by the nonlinear
phase accumulation determined by the Kerr effect [17].
However, we show here that this constraint can be re-
moved by replacing a section of the normal cavity fiber
directly following the polarizer by a polarizationmaintain-
ing (PM) fiber. Then, a pulse propagating in that section
accumulates Kerr phase but does not experience NLPR.
Thus, it is possible to achieve different values of ~γk=γk ra-
tio, between 1 (all-non-PM cavity) and 0 (all-PM cavity).
Another directly controlled parameter is the spectral fil-
tering coefficient γg. It was changed by means of an intra-
cavity variable spectral filter—Santec OTF-350, manually
tunable from 1 to 10 nm spectral width—inserted before

Fig. 2. (Color online) Theoretically calculated curves (solid)
and the experimental observations of the dimensionless slopes
LT=P

ffiffiffiffiffiγdp
of the pulse annihilation transition lines as a function

of γd=γg, for three values of ~γk=γk: 1 (red, left), 2=3 (blue, mid-
dle), and 1=2 (green, right). The dashed curves are eye guides
that connect the data points taken for a fixed value of ~γk=γk. The
error bars show the accuracy of the linear fit on the data points
shown in Fig. 1(b).

Fig. 1. (Color online) (a) Pulse annihilation cascade—rf
power versus optical power P, for three injected noise power
levels LT (decreasing from left to right). (b) Injected noise
power density LT as a function of the power P at the pulse de-
stabilization threshold; measured data and fit lines for three va-
lues of spectral filtering width γg. Steeper slope corresponds to
a higher pulse stability against noise. [The apparent crossing of
the three lines is coincidental. The color scheme is coincidental
and does not imply color correspondence between (a) and (b)].
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the gain fiber. Then, measurement of the total chromatic
dispersion of the laser cavity completes the mapping of
the system parameter space.
The pulse annihilation cascade for a constant level of

injected noise power was measured by preparing the sys-
tem in a many-pulse steady state, and gradually reducing
the pumping power, while measuring both the out-
coupled optical power and the rf power from a fast
photodiode. The rf versus optical power for three differ-
ent injected noise power levels are shown in Fig. 1(a),
where the pulse annihilation events correspond to jumps
in the rf power. We note that, as shown in [13,14], the
mode-locked laser state is well described by the multi-
pulse theory throughout the experimentally observed an-
nihilation cascade, even though the solution of Eq. (3) is
given for the case of highly multipulse operation. For dif-
ferent values of injected noise power, we measured the
annihilation threshold of the last remaining pulse, which
has the best measurement data quality. Figure 1(b)
shows the resulting set of points and the corresponding
linear fit, obtained for three different values of the filter’s
spectral width.
The dataset of the destabilization slope dependence on

γg was measured in three cavity configurations, corre-
sponding to three values of the parameter ~γk=γk: 1,
2=3, and 1=2. The obtained data is displayed in Fig. 2 with
dashed guiding lines connecting points with a fixed ~γk=γk
value. Note that the intracavity power P cannot be di-
rectly measured but is estimated from the output power.
Since the constant power model is approximate and the
power fluctuates with the cavity elements, we estimate
that the cavity power to output power ratio is double
for the configurations containing the PM fiber due to ad-
ditional coupling losses; this factor is taken into account
in the data points shown in Fig. 2. There is also uncer-
tainty in the injected noise power spectral density LT

that is equal to the measured total noise power divided
by the effective spectral width of the ASE source. The
result is an order 1 factor of error in the experimental
value of LT=P that we used as a fitting parameter in com-
parison with the theoretical predictions. The best fit was
obtained when this factor was approximately 3=2, and
the comparison is shown in Fig. 2. Evidently, there is
a good quantitative agreement between experiment
and theory for a wide range of laser parameters, particu-
larly in the correspondence of the maxima of the theore-
tical and experimental curves—a result independent of
the fitting procedure. The likely cause of the discrepancy
for the rest of the parameters lies in some of the simplify-
ing assumptions made in the theoretical analysis, mainly
the solitonic pulse shaping, and the use of results derived
for many-pulse steady states beyond their strict domain
of validity. These theoretical limitations can be removed

by a straightforward extension of the present theory if
the need for higher accuracy arises.

In conclusion, we have shown that the basic underlying
physics of the pulse-formation–annihilation process in a
passively mode-locked fiber laser is well described by
the SLD theory, confirming that this theory can be used
for prediction and design of mode-locked laser operation.
We have identified two dimensionless parameters govern-
ing the light-mode dynamics in our experimental system
and analyzed the phase diagram for a wide range of these
parameters experimentally and theoretically with good
correspondence. In particular, we have shown that, for
certain parameter relations, the noise destabilization
curves in Fig. 2 exhibit maximal values—optimizing the
laser configuration to reach this parameter region will
lead to the most stable mode-locked operation.

This research was supported by the Israel Science
Foundation (ISF).
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