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Abstract: We have recently predicted (R. Weill, B. Fischer and O. Gat, 
Phys. Rev. Lett. 104, 173901, 2010) condensation of light in actively mode 
locked lasers when the laser power increases, or the noise, that takes the role 
of temperature, decreases. The condensate is characterized by strong light 
pulses due to the dominance of the lowest eigenmode (“ground state”) 
power. Here, we experimentally demonstrate, for the first time, light mode 
condensation transition in an actively mode-locked fiber laser. Following 
the theoretical prediction, the condensation is obtained for modulations that 
have a power law dependence on time with exponents smaller than 2. The 
laser light system is strictly one dimensional, a special opportunity in 
experimental physics. We also discuss experimental schemes for 
condensation in two- and three-dimensional laser systems. 
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Bose-Einstein condensation (BEC) has been experimentally demonstrated in many systems of 
cold atoms [1–3]. Condensation was also attributed to classical waves and light such as in 
weakly nonlinear medium [4], and random media [5]. In the present work we show 
experimental BEC demonstration in a laser light system. 

Our work is done in the realm of a new approach developed for many mode laser systems 
that is based on statistical mechanics [6–8]. The outcome was a thorough thermodynamics-
like theory of statistical light-mode dynamics (SLD), where quantities such as entropy, free 
energy and noise that takes the role of temperature, are essential for understanding the light 
system. The theory was applied to passive mode-locking, showing theoretically and 
experimentally [9–11], that pulse formation is a first order phase transition of the modes from 
random to ordered phase orientations. The SLD theory was also applied to active mode-
locking (AML) [12], the focus of the present work. AML generates pulsation and laser mode 
ordering by modulating the laser waveform periodically, at a rate that matches or is a multiple 
of the frequency difference between consecutive axial (longitudinal) modes of the laser 
[13,14]. 

Very recently [15], we have theoretically shown the possibility of condensation in AML 
laser systems (see Fig. 1) when the modulation has a power law dependence on time with an 

exponent 2η < . Then Bose-Einstein condensation (BEC) transition was predicted to occur 

when the power of the laser is increased, by increasing the pumping, or alternatively when the 
noise in the laser is decreased, by controlling the noise injected into the cavity. In the 
condensate state the first AML eigenmode carries a macroscopic part of the total cavity 
power, and the power in all of the higher order eigenmodes, that produces background light, is 
bounded. The meaning of that will be seen and discussed in the experimental part below. 

We summarize here the theory on the optical BEC in AML [15]. The governing equation 
for AML with noise is given by: 

 �( , )
( ) ( , ) ( , ) ( , ) ,

t
O t t g t t

ψ τ
ψ τ ψ τ τ

τ
∂

= + + Γ
∂

 (1) 
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γ  are the gain filtering and 

dispersion coefficients, respectively, and g  is the saturated net gain. ( )V t  is the loss-gain 

modulation, that is a periodic function with a period 2 / ( / )
R

t L c n= , the cavity roundtrip 

time, where L is the cavity length, c - the speed of light and n - the refractive index). The 

point at which V  has its minimal value is denoted by 0. We consider modulations that are not 

smooth at the minimum with a power law behavior ( ) /
R

V t M t t
η

∼ . The commonly used 

modulation form is sinusoidal that is quadratic in the first order; i.e. 2η = , characterizing a 

smooth minimum. Γ , an additive noise term that originates from spontaneous emission and 
other possible internal and external sources, is modeled by a centered white Gaussian process 
with covariance 2T  per unit length. 

Equation (1) is solved by an eigenfuction expansion of the operator � ( )O t . The main 

interest is in finding the overall power of the waveform, and compare it with the power of the 
“ground state” eigenmode; i.e. the lowest pulse mode. We found that in the limit of a large 
number of bound modes, the overall power is given by: 
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where the first term at the right hand side gives the power of the lowest pulse eigenmode with 

an eigenvalue 
0
ε , and the second term approximates the power in all the higher eigenmodes, 

with a density of states 
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where ( )1/ 2
2

/R gN Mt γ= is the total number of bound eigenmodes, assumed to be very large. 

The similarity to BEC can be seen right away [1–5]. According to Eqs. (2) and (3), for small 

values of P T  the power is distributed among a large number of eigenmodes, and as P  

increases or T  decreases, 
0

gε −  becomes smaller, and the power distribution becomes 

narrower. For 2η <  the integral in Eq. (2) converges for 
0

0gε − = , and a condensation 

transition takes place for 
0

( )
M

c

d
P P T

ρ ε ε
ε

> = ∫ . When P  increases beyond 
c

P , all the excess 

power 
c

P P−  resides in the basic eigenmode. However, for 2η ≥ , condensation is not 

possible and the overall power in all higher eigenmodes that produces a noisy background 

continue to increase with /P T , deteriorating the coherence properties of the pulse. 

Theoretical graphs for the lowest pulse eigenmode power 
0

/ ( 1)
c

p P η =  as a function of the 

total laser power / ( 1)
c

P P η =  are given in Fig. 2. We can see the sharp BEC-like transitions 

for 1/ 2, 1η = , and the gradual slow increase for 2, 4η = . An additional statistical-

mechanics based insight can be gained when examining the bare axial mode system, perturbed 

by the modulation that invokes interaction between the modes. For 2η <  it is a long range 

mode interaction in the frequency domain, as is the case in passive mode-locking [6–8] and 
contrary to AML with 2η ≥  [12], yielding a phase transition even in one-dimensional many 

body systems. It means in our case mode-phase ordering over the full frequency band and as a 
result very short pulses. 

 

Fig. 1. Actively mode-locked laser: The Experimental setup of the mode-locked ring fiber laser 
with electro-optic modulator and an external noise source. EDF, erbium-doped fiber; ASE, 
amplified spontaneous emission. 

To experimentally demonstrate the condensation we used a fiber laser. It is advantageous 
to use in the experiment a long laser cavity with a broad gain bandwidth that supports a large 

number of modes (N). We built a fiber laser with a total length of 128m≈ , that corresponds to 

641.8nsec roundtrip time (a frequency of 1.558 MHz ). The setup, schematically shown in  

#127745 - $15.00 USD Received 28 Apr 2010; revised 5 Jul 2010; accepted 5 Jul 2010; published 22 Jul 2010
(C) 2010 OSA 2 August 2010 / Vol. 18,  No. 16 / OPTICS EXPRESS  16522



Fig. 1, consisted of an erbium-doped fiber (EDF) ( 90cm  long with 33 /dB m  gain) as the gain 

medium, a Mach-Zehnder modulator, two isolators, and two polarization controllers. The 
modulator was controlled by RF arbitrary waveform generator, with a resolution of 0.5ns∼ . 

Since the shortest pulses width of the lowest pulse eigenmode in the experiment was 3ns∼ , 

there was effectively no distortion at the signals edge for 2η < . Therefore ( )V t  and ( )ρ ε  

approximately kept the same power law dependence for small values of x  and ε . 

In order to have control on the noise strength, an outside noise source was injected into the 
laser through a 20% coupler. It was taken from the amplified spontaneous emission of an EDF 
amplifier with 22.7 dBm output, filtered and controlled by a variable attenuator. The 
measurement of the output light waveform (from the above mentioned 20% coupler) was 
taken by a photo-diode and a sampling scope. Without the external noise, the laser operated at 
the pulse mode even for low pumping. For observing the condensation transition, noise with a 
power of 10.7 dBm was injected into the cavity. 

For the active mode-locking we applied modulation signals using the RF waveform 

generator with power law time dependence with the four different exponents: 1 / 2, 1, 2, 4η = . 

The modulation frequency matched the basic cavity resonance. The laser power was varied 
for each exponent by controlling the pumping current. Since the power distribution is 

determined only by the ratio /P T , we could achieve the same effect by varying the noise 

power (“temperature), as we have formerly done (9,10), instead of the laser power. We 

recorded and averaged over time the output waveform (
2

( )tψ ) for each pumping level and 

subtracted from it the biased noise level originating from the unbound modes that are 
irrelevant in our calculations. We then extracted from it the average total power and the peak 
power. 

 

Fig. 2. Theoretical calculation of the AML condensation, following Ref. 4: Graph of the power 

in the first eigenmode 
0

/p P  versus the normalized overall laser cavity power 

/ ( 1)
C

P P η = , showing sharp transitions for 1/ 2, 1η = , and gradual changes for 

2, 4η = . The calculation is done for N = 106. 

Figure 3a shows the experimental measurements of the pulse peak power dependence on 
the total laser cavity power for the four values of η . The peak power gives the pulse squared 

amplitude that is a measure of the strength of the first eigenmode, and the quality of the mode 
locking. Figure 3b shows the same graphs for the pulse energy (normalized by 

( 1) 6.7
C

P pJη = ≈ ) which is the peak power multiplied by the pulse width. These are the 

widths of the lowest eigenmode, calculated for each η , that were found to accurately match 

the experimental results. The graphs in Fig. 3b for the pulse energy show the first eigenmode 
occupancy. The similarity to the theoretical results in Fig. 2 is evident. The condensation 

occurs, as the theory predicts [15], for the modulation signals with 1/ 2, 1η = , but not for 
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2, 4η = . The solid lines in Fig. 3 are the theoretical fits to the experimental results, 

numerically calculated from the waveforms and eigenfunctions expansion for 1000N ≈ . The 

experimental results follow very closely the theory. We can also see the agreement with the 

theoretical prediction for the ratio 
1 1/ 2

( 1) / ( 1/ 2) 6 / 2 9 / 4
C C

P P C Cη η= = = = , which is close 

to the measured value of 2≈ . 

 

Fig. 3. Experiment showing the condensation: The dependence on the overall laser cavity 

power normalized by ( 1) 6.7
C

P pJη = ≈  of: (a) The measured normalized pulse peak 

power, and (b) the pulse energy, given by the peak power multiplied by the width of the lowest 

eigenmode for each η  taken from the calculation that was found to match the experimental 

values in Fig. 4. It measures the first eigenmode occupancy. We can see the similarity to the 

theoretical graphs in Fig. 2, with a sharp transition for 1/ 2, 1η = , and a gradual slow 

growth for 2, 4η = . The solid lines are the theoretical fits to the experimental results, 

numerically calculated from the waveforms and eigenfunctions expansion for N = 1000. 

 

Fig. 4. Measured output light waveforms: Shown for 1/ 2, 1, 2, 4η =  at three power levels 

marked in Fig. 3: (A) / ( 1) 0.4
C

P P η = ≈ , (B) / ( 1) 0.8
C

P P η = ≈ , and (C) 

/ ( 1) 1.95
C

P P η = ≈ . The condensation is seen through the transition from low-amplitude 

noisy waveforms to high peak power pulses with ~1ns widths for 1/ 2, 1η = . The cavity 

roundtrip time is 641.8
R

t nsec= . Note the different power scale in the vertical axis for the 

various total cavity power. 

Figure 4 shows the measured waveforms taken by the oscilloscope, for each of the four 

values 1/ 2, 1, 2, 4η = , at the following three power levels, marked in Fig. 3a: (A) 
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/ ( 1) 0.4
C

P P η = ≈ , before the transition, (B) / ( 1) 0.8
C

P P η = ≈ , just after the condensation 

of 1/ 2η = , and (C) / ( 1) 1.95
C

P P η = ≈ , when the peak power of 2η =  starts to increase. In 

the first row (A), the laser still works in a noisy regime for all η , and the light waveforms 

show modulated noise that approximately follows the applied modulation signals, each with 
its respective η , but not mode-locking. The second row (B) shows the condensate waveforms 

for 1/ 2η = , and the non-condensate waveforms for 1, 2,4η =  with a gradual population 

buildup. The third row (C) shows the pulses obtained for all three cases at a high power level, 

but clearly shows the much better quality of the pulses for 1/ 2, 1η =  compared to the 

2,4η =  cases. We can therefore summarize that when condensation takes over the pulses 

drastically shorten from noise waveform widths in the order of the cavity length down to ~1 
ns)and in shorter lasers and reduced jitter to less than ps), corresponding to the lower 
eigenmode that depends on η . Since harmonic modulation ( 2η = ), the common and simple 

method used for active mode locking, is at the boundary of condensation, it is a less effective 

way to generate short pulses compared to the nonsmooth modulations with 2η < . 

We add a note on condensation of light in mode locked lasers at dimensions higher than 

one. Theoretically, if the /t = x / (c n)  dependent operator � ( )O t  in Eq. (1) is extended to 2 or 

3 dimensions, i.e. � ( ) 2
( ) ( ) ,g dO r i V rγ γ= − ∇ −
� �

 the analysis gives weaker conditions on the 

potential (modulation) exponent, η , required for condensation. For example, in three 

dimensions, condensation occurs for all values of η , including the zero potential case where 

the system has only a volume confinement. For observing condensation in three dimensions 
we can use for example a laser cavity with many transverse modes instead of a single mode 
fiber. Under the paraxial approximation, Eq. (1) holds with 

 � ( ) ( )
2

2

1 22
( , , ) ( ) ( , ) ,

g d x
O t y z i i V t V y z

t
γ γ γ γ ⊥ ⊥

∂
= − + + ∇ − −

∂
 (4) 

where /t = x / (c n) is the propagation direction (in the pulse frame), and ,y z  are the 

transverse directions. The 2

2
iγ ⊥∇  term naturally originates from the paraxial approximation, 

whereas 2

1
γ ⊥∇  can result from spectral filtering in the transverse spatial frequencies. ( , )V y z⊥  

is an optional loss potential in the transverse direction, while ( )
x

V t  is the modulation 

potential. We can think of three-dimensional experimental realization by using a perfectly 
coated cylindrical cavity, a gain medium with current modulation, and two loss masks: one 

that introduces a modulated loss ( , )V y z⊥  at the transverse directions, and the second mask 

with matching lenses provide spatial filtering. According to the theory, for any applied 

modulation signal ( )
x

V t , the laser should produce a condensate waveform, beyond a threshold 

pumping level, where the first transverse mode and the lowest pulse mode occupy a 
macroscopic portion of the power. 

Conclusion 

We have experimentally demonstrated Bose-Einstein condensation in active mode-locking. 
Besides the basic side in being a new one dimensional laser light BEC system, it can have 
practical meanings for ways to use modulations that can be more effective than the usual 
methods for producing high quality short laser light pulses. 
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