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We experimentally demonstrate critical behavior of a passively mode-locked laser with properties that

are similar to those of gas-liquid and magnetic spin systems. The laser light modes provide a special

nonthermodynamic many-body system where noise takes the role of temperature. It is also a rare

opportunity of an experimental pure one-dimensional system. As theoretically predicted, we identified

in the laser light-mode system two thermodynamiclike phases, one characterized by spontaneous pulses

and the second by field-induced parapulses, separated by a first order phase transition boundary that is

terminated by the critical point. We also measured the critical exponents, � � 0:52, � � 1, and � � 3:1,

which are close to the mean field values that are exact in the laser system.
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Phase transitions and critical phenomena are manifesta-
tions of dramatic changes and discontinuities of macro-
scopic properties in systems with a large number of
interacting degrees of freedom [1,2]. While those ideas
reached and influenced very different fields like biology
[3] and economy [4], experimental observations in physics
have been mostly concentrated in material systems, atomic
or molecular. Canonical examples are the gas-liquid-solid
and magnetic spin systems. This work deals with a non-
thermodynamic many-body laser light system.

Lasers that support a large number of axial modes, such
that are needed, for example, in mode locking for produc-
ing ultrashort light pulses [5,6], were shown to follow strict
statistical mechanics rules given by the statistical light-
mode dynamics (SLD) theory [7–13] where noise takes the
role of temperature. The situation is very similar to the
classical examples of magnetic spin and gas-liquid-solid
systems. It was theoretically and experimentally shown
that pulse formation in passive mode locking is a first order
phase transition where the light-mode system becomes
ordered [7,8,12]. The varied parameters were power and/
or noise (‘‘temperature’’) that were controlled by the
amount of pumping and/or injection into the cavity of
outside noise (that adds to the basic quantum noise). A
more recent finding was the prediction [14] and the experi-
mental demonstration of Bose-Einstein condensation in
active mode-locked lasers.

It was theoretically shown that passively mode locked
(PML) lasers can exhibit critical behavior when external
light pulses are injected into the laser cavity [11]. The
injected light takes the role of pressure in gas-liquid-solid
systems or the external magnetic field in spin systems. The
many light-mode system tends to produce pulses due to the
mode aligning force of the saturable-absorber nonlinearity,
but at nonzero noise (‘‘temperature’’) levels the entropy
pushes the mode system (the phases) to randomness and a
quasi continuous wave (CW) operation. The injection joins
forces with the saturable-absorber for aligning the mode
phasors, promoting pulse operation. Therefore, just as spin

systems can have spontaneous magnetization, para-
magnetization when an external magnetic field induces
spin orientation (para-magnet), and no-magnetism (spin
disorder), we can have in the PML laser spontaneous-
pulse, parapulse, and no-pulse regimes.
The SLD theory for the complex many mode PML laser

system with externally injected pulses can be summarized
by one very simple equation from which we can derive the
system properties. It is the thermodynamiclike potential
obtained in Ref. [11] [Eq. (10) with n ¼ 1]:

f ¼ ��s

2
x4 � T logðP� x2Þ � 2hx; (1)

where x is the light pulse amplitude, P is the total laser
cavity power, T is the noise strength, that takes the role of
temperature, h is the light pulse injection amplitude (‘‘ex-
ternal field’’), and �s is the nonlinear saturable-absorber

coefficient [5,7]. The normalized pulse amplitude ~x ¼
x=P1=2 (therefore, ~x 2 ½0; 1�) can be viewed as an order
parameter of the mode system, analogously to the density
in gas-liquid solids and the magnetization in magnetic spin

systems. In reduced variables, ~x ¼ x=P1=2, ~T ¼ T=ð�sP
2Þ,

and ~h ¼ 2h=ð�sP
3=2Þ, Eq. (1) can be written as ~f ¼

�ð~x4=2Þ � ~T logð1� ~x2Þ � ~h ~x , up to unimportant addi-
tive terms independent of x (orm) and �s. The analysis that
leads to f in Eq. (1) can be done in the spatial or the
frequency domain [11]. The injected pulse train with a rate
that matches the laser cavity roundtrip can be viewed in the
frequency domain by a phase aligned frequency comb that
by proper synchronization overlap the laser axial modes. It
therefore acts on the laser modes’ phases as an aligning
force, in a similar way that an applied magnetic field
induces alignment in a spin system. We add that f in
Eq. (1) relates to the simple case of one pulse in the cavity
[8,11]. We also stress that Eq. (1) was obtained in the mean
field theory that in our case was shown to be exact in the
thermodynamics limit of a large number of modes.
Therefore, the results derived from f, including the critical
exponents, are exact. The PML laser system is therefore a
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special statistical mechanics example where the classical
mean field formalism is exact.

f consists of three terms: The first is the ‘‘internal en-
ergy’’ from the nonlinear mode interaction due to the satu-
rable absorber, that works for mode ordering and short
pulses. The second term is the opposite force of entropy
that makes its living from the many disordered configura-
tions. This is the important addition of the SLD theory. The
last term is the external field by the external pulse train that
works for the alignment of the modes and pulse formation.
It is then the combination of all these parts that gives the
free energy and the laser system behavior.

The properties of the PML laser system can be derived
from the thermodynamiclike potential f. The x that gives
the global minimum of f, determines the expectation value
of the pulse amplitudem ¼ hxi, which can be viewed as an
order parameter in our laser system. Calculating ~m ¼
m=P1=2 as a function of ~T ¼ T=ð�sP

2Þ and ~h yields the
phase diagram shown in Fig. 1, with two phases: In one, the
pulse is induced by the injection and therefore we call it the
parapulse phase. It includes a no-pulse case for zero exter-

nal field6, at the ~h ¼ 0 line for ~T > 0:2036. The second
phase is characterized by a strong spontaneous pulse
(forced by the saturable-absorber nonlinearity). The phases
are separated by a first-order phase transition line, the co-
existence curve, characterized by an abrupt change of
the pulse amplitude. The discontinuity becomes smaller

until it vanishes at the critical point: ð ~TC; ~hC; ~mCÞ �
ð0:34; 0:20; 0:53Þ. For obtaining the critical exponents, we
applied a small deviation analysis of the minimum of the
free energy near the critical point [11]. The critical expo-

nents are given by ðmC �mÞ / ðTC � TÞ� when the criti-
cal point is approached along the coexistence curve,

ðmC �mÞ / jhC � hj1=� for approaching along the h axis
or along any other than the coexistence curve direction in
the P-h plane, and @ðmC �mÞ=@h / ðTC � TÞ�� along the
coexistence curve. The predicted exponents in our system
are [11] � ¼ 1=2, � ¼ 1, and � ¼ 3. These are the mean-
field values which are exact in our system.
The experimental setup we used to verify the theory,

schematically shown in Fig. 2, consisted of an erbium-
doped fiber ring laser, � 20:7 m long, corresponding to
10 MHz cavity resonance. It is a single (lateral) mode fiber,
and therefore the laser system is one-dimensional. The
saturable absorber was provided by the nonlinear polariza-
tion rotation effect in the fiber combined with polarizers in
the cavity. Matching the external pulse rate and its syn-
chronization to the spontaneous pulse was a major chal-
lenge in the experiment. We solved that by deriving the
external pulse train from the mode-locked laser itself that
was operated such that it already generated one pulse. We
then amplified the pulse train outside the laser, filtered it,
temporally, to eliminate noise from out of the pulse region,
and spectrally, capturing the spectral region of a Kelly
sideband [15], having a soliton spectrum, and differentiat-
ing it from the unfiltered pulse. Then after controlling its
strength by a variable attenuator, the external pulse was
injected into the laser at a far site from the first pulse in the
cavity, where we followed a new pulse formation. This new
pulse was the target of our measurements. The first pulse
with a constant power that reached the saturation value [8]
with its negligible entropy could be omitted from the
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FIG. 1 (color online). Theoretical phase diagram in the ~T-~h
plane of the PML laser with external pulse injection: The lines
are the boundary with first order phase transition between the
parapulse and spontaneous-pulse phases, terminated at the criti-
cal point ( ~TC, ~hC), where the phase transition discontinuity
disappears.

FIG. 2 (color online). Experimental setup of the actively
mode-locked fiber laser with an external pulse source: erbium-
doped fiber (EDF), polarization controller (PC), wavelength
division multiplexer coupler (WDM), variable optical attenuator
(VOA), Mach-Zehnder modulator (M-Z), band-pass filter (BPF),
optical amplifier (Amp).
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calculations and therefore did not affect the new pulse
formation. For the new pulse, at its formation stage it is
below the saturation regime [8]. However, as P and h in-
crease we can observe in the experiment [Fig. 3(c)] the
saturation effect, that can be accounted for by higher order
nonlinear saturation terms [9]. The total power in the cavity
was varied by changing the pumping of the laser amplifier.
The data were taken from a small portion of the laser light
that was coupled out to the measuring equipment. In the
measurement process we scanned the P-h plane in the area
shown in Fig. 3(c), varying P for a specific h, obtaining a
matrix of 71� 81 measurement points. We also note that
the scanning direction was from the parapulse to the
spontaneous-pulse phase, and we were careful in avoiding
hysteresis effects [10].

Figure 3 andMovie 1 of the supplementary material [16]
show the measurement results on the dependence of the
pulse power as a function of P and h. It is a measure of the
pulse energy since the pulse width in the experiments of
�1 psec was significantly shorter than the measurement
resolution that was �10 psec. P was varied by changing
the current injection to the pump laser diode, but since the

relevant variable is ~T ¼ T=ð�sP
2Þwe could vary T, instead

of P, by changing the external noise injection level and
keeping P constant [8,12]. h was varied by controlling the
external injection strength. We have found that the external
pulse injection, although filtered, added noise to the cavity
and thus changed T as well. This factor was taken into
account in the data analysis by adding it to the laser noise
T0, so that T ¼ T0 þ ah. Figure 3(b) shows the theoretical
diagram that includes the additional noise, with T0 ¼ 1 and
a ¼ 3:3 that were found to fit the experimental measure-
ments, shown in Fig. 3(c).
The graphs show the abrupt first-order phase transition

as P / 1= ~T is varied. As h and P increase, the line that
follows the discontinuity in m draws the boundary (coex-
istence line) between the parapulse and the spontaneous-
pulse phases. The discontinuity narrows to zero at the
critical point, and beyond it m changes continuously.
This measured phase diagram is remarkably similar to
the theoretical prediction shown in Fig. 3(b).
We now turn to the measurements that provide the

critical exponents in our experimental system. Figure 4
shows graphs of (mC

2 �m2) near the critical point along

FIG. 3 (color online). Pulse power as a function of P and h: (a) Theoretical graph. (b) Theoretical graph with added noise from the
external pulse injection, T ¼ T0 þ ah, (with T0 ¼ 1 and a ¼ 3:3) that renormalizes P that is then denoted by Pþ. (c) Experimental
graph that is similar to the theoretical prediction in (b). We can see in the figures the para- and spontaneous-pulse regimes separated by
a first-order phase transition discontinuity which narrows to zero at the critical point. Beyond this point there is a continuous transition
between the two phases. For large P and h we see in the experimental graph the pulse saturation effect [9]. The experimental pulse
power waveforms along two paths in the phase diagram are shown in Movie 1 of the supplementary material [16].
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two different directions in the (P, ~h) plane. Figure 4(a) it is
along the coexistence curve and Fig. 4(b) is along P,
changing P and keeping h ¼ hc constant. In Fig. 4(c) it
is again along the coexistence curve. We note about the
axes in the graphs that the dependence is on (PC � P) (in
log-log scales) that gives the same results as plotting
against (TC � T). In addition, the measurements in the
graph were of the pulse power, but we obtain from them
the right exponents, since ðmC

2 �m2Þ � 2mCðmC �mÞ. A
linear fit was added to each of the plots. The slopes give the
experimental critical exponents, found to be � � 0:52,
� � 3:1, and � � 1, very close to the theoretical values,
� ¼ 1=2 and � ¼ 3, and � ¼ 1. We thus experimentally
verified the exact SLD mean field theory in the PML laser
system [11].

Conclusion.—We have experimentally shown critical
behavior of light in a passively mode-locked laser with
properties that are very similar to those of classical ther-
modynamic systems. We have measured and shown the
system phase diagram and the critical exponents that fol-
low and match the exact mean field theory. The laser light
system provides a special nonthermodynamic one-
dimensional many body system that deepens the under-
standing of mode locking and provides a new experimental
statistical mechanics example.
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FIG. 4 (color online). Measurements near the critical point, obtaining the three critical exponents �, �, and �: Since we are
interested in the graphs slope in log-log scales, we used dimensionless variables, normalized by arbitrary constants to move the curves
center close to the axes origin. The data was taken from a few measurement sets, shown in different dot shapes and colors. (a) For �:
Plot of log½ðm2

C �m2Þ=m2
arbÞ as a function of log½ðP� PCÞ=Parb�, where the critical point is approached along the coexitence curve.

Since near the critical point ðmC
2 �m2Þ � 2mCðmC �mÞ, the slope of the linear fit gives the exponent � ¼ 0:52. The theoretical

value is � ¼ 1=2. (b) For �: Plot of log½ðm2
C �m2Þ=m2

arbÞ as a function of log½ðP� PCÞ=Parb� where the critical point is approached
along the P axis. The slope of the linear fit gives the exponent: 1=� ¼ 0:32. The theoretical value is 1=� ¼ 1=3. (c) For �: Plot of
log½ @@h ðm2

C �m2Þ=m2
arb� as a function of log½ðP� PCÞ=Parb� where the critical point is approached along the coexistence curve. The

derivative procedure results more scattered data points compared to the two former figures. The slope of the linear fit gives the
exponent �� � �1. The theoretical value is � ¼ 1.
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