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We show that the formation of pulses in actively mode-locked lasers exhibits in certain conditions a

transition of the laser mode system to a light pulse state that is similar to Bose-Einstein condensation

(BEC). The study is done in the framework of statistical light-mode dynamics with a mapping between the

distribution of the laser eigenmodes to the equilibrium statistical physics of noninteracting bosons in an

external potential. The light-mode BEC transition occurs for a mode-locking modulation that has a power

law dependence on time with an exponent smaller than 2.
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Active and passive mode locking of lasers are the main
methods for obtaining ultrashort light pulses, that nowa-
days can reach the few femtosecond regime [1,2]. They are
based on locking the phases of many axial (longitudinal)
modes of a laser that can in certain cases span over most of
the visible frequency band. While the mode locking has
been traditionally viewed as a sort of light kinematical
mechanism, we have developed an approach [3] that treats
the many light-mode system with noise as a statistical
mechanics theory. An important ingredient of it arises
from the understanding that noise that takes the role of
temperature in thermodynamic systems must be treated
nonperturbatively. The outcome is statistical light-mode
dynamics (SLD), a powerful theory for the discovery and
study of points of sharp changes in the global structure of
the optical waveform, that have the significance of ther-
modynamic phase transitions. It was found, for example,
theoretically and experimentally [3–6], that passive mode
locking is nothing but a first-order phase transition of the
modes from random phase orientations to an ordered phase
(pulses). We also applied SLD to active mode locking
(AML) [7]. In an exact solution, valid in the parameter
regime of flat gain filtering profile, no dispersion and
harmonic modulation, the system was mapped to the
Berlin-Kac spherical model [8] that lacks phase transitions
in one dimension. Therefore, in that regime, there is no
global ordering of the modes for the same reasons that
prevent ordering in one-dimensional short-range interact-
ing systems, and as a consequence, the pulses in that case
are far less than optimal.

In the present Letter, we study AML that includes para-
bolic gain filtering and dispersion, where the gain modu-
lation has a power law dependence on time with an
exponent smaller than 2. We then find that the mode-
locking phase transition occurs, and takes the form of
power condensation, wherein the basic AML laser pulse
eigenmode carries a macroscopic fraction of the total
cavity power, in a full analogy to the macroscopic occu-

pation of the ground state in Bose-Einstein condensates
(BEC) in an external potential [9]. BEC has been experi-
mentally demonstrated in recent years in systems of cold
atoms [10]. Still, it has been often observed that the con-
densation is a wave phenomenon, not limited to the quan-
tum mechanics of bosons. In relation to optics,
condensation has been theoretically attributed to light in
a weakly nonlinear medium [11], and in random media
[12]. Here, it is shown to occur in a laser system that can be
easily studied in experiments. Indeed, we are in the midst
of an experimental study with preliminary results that show
for the first time laser light BEC.
Active mode locking is obtained by a periodical modu-

lation of the laser, for example, via the effective gain, with
a frequency that equals the frequency difference between
consecutive axial modes of the laser. If the modulation is
sinusoidal, as commonly used, it produces two sidebands
of each mode, that may eventually lock the mode phases
and lead to the formation of pulses. However, other forms
of gain modulation can also be used, and these will be
investigated here. The basic mechanism that determines
the pulse width in AML is the competition between the
production of sidebands by the gain modulation that tends
to make the pulse narrower and the gain filtering that stems
from the finite amplifier bandwidth that limits the spectral
width of the pulse [13,14].
The effect of noise can be incorporated in the ‘‘master

equation’’ approach [14] by adding a Langevin noise
source term. The effect of classical and quantum noise
has been considered in several papers since the 1970s
[15–18] as a small perturbation of the noiseless pulse
solution of the master equation. However, as was shown
[3], in spite of its small amplitude, the perturbation ap-
proach is in general not justified, since the accumulation of
noise in the whole cavity creates a continuum background
that carries a significant fraction of the total cavity power
and competes with the pulse. The resolution of this issue is
achieved with SLD.
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When applied to the nonlinear interaction of passive
mode locking, the SLD analysis was solved in a mean-field
theory that becomes exact in the thermodynamic limit,
where the number of modes approaches infinity, and the
onset of mode locking is a first-order phase transition
[19,20]. The SLD analysis of AML is even simpler, since,
the equation being linear, the SLD steady state can be
expressed explicitly using the eigenmodes of the dynami-
cal linear operator. It turns out that in the usual harmonic
modulation case, even a small amount of noise may desta-
bilize AML pulses, prohibiting the possibility of an AML
transition altogether. This finding does not imply that AML
pulses cannot be formed, but it limits the coherence prop-
erties and implies that pulses are much broader than the
lower bound provided by the noiseless theory [13,14]. In
particular, the assumption that only the fundamental AML
eigenmode has a significant amplitude is in general not
justified.

The situation is very different if the AML modulation is
a nonsmooth function of time with a power law singularity.
Here, we show that the AML eigenmode (not axial mode)
system undergoes a BEC phase transition when the overall
laser power is increased, or noise (’’temperature’’) is de-
creased. Unlike passive mode locking, the transition is
continuous, characterized by the buildup of a macroscopic
power fraction in the fundamental eigenmode. This is
precisely the mechanism that describes the onset of BEC
in noninteracting boson systems when the temperature is
decreased or the density is increased beyond the conden-
sation point. The transition is observable as a qualitative
change in the laser waveform as a function of the system
parameters that becomes sharper when the number of AML
eigenmodes increases, as shown in Fig. 1.

The standard AML master equation with an additive
noise source is [14]

@c ðt; �Þ
@�

¼ ÔðtÞc ðt; �Þ þ gc ðt; �Þ þ �ðt; �Þ (1)

where c ðt; �Þ is the electric field envelope, and t and � are
the short and long time variables, describing the dynamics
of c within a single round-trip time �R, and over the course

of many round-trip times, respectively [14,21]. The opera-

tor ÔðtÞ is

ÔðtÞ ¼ ð�g � i�dÞ @
2

@t2
� VðtÞ: (2)

�g and �d are the gain filtering and dispersion coefficients,

respectively, and g is the saturated net gain. VðtÞ is the
time-dependent loss-gain modulation. It is a periodic func-
tion with period �R, the cavity round-trip time, and we
assume that its scale of variation is �R. Denoting the point
at which V achieves its minimal value by 0, we will
consider gain signals with a power law dependence VðtÞ �
Mj t

�R
j�, for small t. The generally used sinusoidal modu-

lation corresponds to � ¼ 2, that otherwise characterizes
any generic smooth minimum. Values of � that are not
even positive integers, including the case of main interest
here 0<�< 2, characterize a nonsmooth behavior of VðtÞ
at its minimum. �, an additive noise that originates from
spontaneous emission and other possible internal and ex-
ternal sources, is modeled by a centered white Gaussian
process with covariance 2T per unit length,
h�ðt;�Þ�ðt0;�0Þi¼2TL�ðt� t0Þ�ð���0Þ, and h�ðt;�Þi¼0.
Since the waveform c is the solution of a Gaussian

forced linear equation, its steady state distribution is also
Gaussian, and can be explicitly expressed in terms of the

eigenmodes of Ô, unðtÞ, n ¼ 0; 1; 2; . . . , with correspond-
ing eigenvalues�"n; we assume that the eigenmodes are a
complete set, ordered so that Re"n is increasing. The
eigenfunctions, normalized so that

R
dt
�R
junðtÞj2 ¼ 1, are

orthogonal only for the zero dispersion case �d ¼ 0.
In terms of the eigenmode expansions c ðt; �Þ ¼P
nc nð�ÞunðtÞ, �ðt; �Þ ¼

P
n�nð�ÞunðtÞ, the master equa-

tion (1) becomes

dc nð�Þ
d�

¼ ðg� "nÞc nð�Þ þ �nð�Þ; (3)

and it follows that c nð�Þ are colored Gaussian processes
whose steady state variance hjc nð�Þj2i ¼ T

Re"n�g is equal to

the mean power pn in eigenmode n.
The steady state distribution is therefore determined by

the spectrum "n of the low-lying eigenmodes, whose
qualitative properties are as follows: If the temporal extent
of the nth eigenmode is tn, then j"nj �Mðtn=�RÞ�; on the
other hand, the eigenmode frequency is tn=n so that we can
make also the estimate j"nj � j�g � i�djðn=tnÞ2 so that

ðtn=�RÞ � ðn2=N2Þ1=ð2þ�Þ; (4)

where N ¼ ðM�2R=�gÞ1=2. The dimensionless parameter N

may be interpreted as the number of eigenmodes affected
by the modulation. It is also a measure of the degree of
pulse compression achieved by the mode-locking action,
so we will assume that N � 1 in the thermodynamic limit.
Our main interest is in calculating the power in the

fundamental eigenmode p0 and comparing it to the total
power P. However, the analysis is hampered by the fact
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FIG. 1 (color online). The fraction of power in the first eigen-
mode p0=P versus the normalized total power P=Pc for � ¼ 1
(solid black line) and � ¼ 2 (dashed red line). The left figure is
calculated for N ¼ 100, and the right for N ¼ 106, shows for
� ¼ 1 a sharp BEC transition at P ¼ Pc, and for � ¼ 2 a
gradual population buildup.
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that the c nð�Þ processes are not independent because of the
chromatic dispersion. For this reason, we assume provi-
sionally that �d ¼ 0 and return to the general case later, to
argue that the basic results remain unchanged in the pres-
ence of dispersion. When dispersion is neglected, the
different eigenmode amplitudes are uncorrelated, the ei-
genvalues are real, and then

P ¼
�Z

jc ðtÞj2 dt
�R

�
¼ X

n

T

"n � g
: (5)

The saturated net gain g depends on P, and Eq. (5) should
be solved for P to give the distribution of power within the
normal eigenmodes. Nevertheless, it is useful to think of
the ratio P=T as given, and that it determines g by (5), and
through it the entire distribution.

It follows from Eq. (5) that when P=T increases, the net
gain must also increase. If jgj � "N0

, then the power in the

first N0 modes is roughly constant, and using Eq. (4), we
can estimate the total power in the first N0 modes by

PN0
¼ ðT=MÞNð2��=2þ�Þ: (6)

When �> 2, PN0
is a decreasing function of N0, and a

broad power distribution is possible for any P, but for �<
2, increasing P=T lowers PN0

and for P=T large enough, all

additional power must go into the fundamental mode.
The analysis is based on the Bohr-Sommerfeld quanti-

zation rules for the "n’s [22], whose validity includes our
domain of interest N � 1, and imply that

X
n

1

"n � g
!

Z �ð"Þd"
"� g

; (7)

where

�ð"Þ ¼ ð1=2�Þ
Z

dtd��ð"� ð�g�
2 þ VðtÞÞ (8)

is the density of eigenstates of the operator Ô. For " � M,
we can use the power law asymptotics of VðtÞ to write

�ð"Þ ¼ c�
N

M

�
"

M

�
�
; � ¼ 1

�
� 1

2
(9)

with c� ¼ 1
4�

R
1
0

dsffiffiffiffiffiffiffiffiffi
1�s�

p .

The solution of Eq. (5) is therefore entirely analogous to
the calculation of the chemical potential of a system of
noninteracting bosons in a trap with potential V [9].
Although the integration kernels are different in the two
problems, the question of condensation depends only on
the low energy asymptotics of the kernel, leading to the
same result that condensation takes place above a threshold
power for �< 2, where the integral in (7) converges in the
infrared. In the case of trapped bosons, this leads to BEC,
whereas in the laser system, it leads to transition to a single
AML eigenmode.

Thus, Eq. (5) can be written as

P ¼ T

"0 � g
þ T

Z M

0

�ð"Þd"
"� g

; (10)

and condensation occurs for �< 2 whenever P> Pc ¼
T
R �ð"Þd"

" . In the condensate phase, p0 � P� Pc com-

pared with pn � PcN
�� for n > 0 so that the power dis-

tribution obtains a giant n ¼ 0 component, in analogy with
the macroscopic ground-state occupation of BEC. As a
consequence, the waveform develops a strong u0 compo-
nent; this is, the narrowest possible AML pulse that satu-
rates the Kuizenga-Siegmann limit [13]. In contrast,
without mode condensation, the pulse width is determined
as an average of many low-lying modes, and the pulse
width shrinks slowly as power is increased.
The AML transition to the condensate state is sharp, and

p0 ¼ P� Pc only in the thermodynamic limit N ! 1.
For finite N, there is a gradual buildup of power in the

ground-state eigenmode and p0 � PcN
�½�=ð1þ�Þ� already

for P ¼ Pc. The width of the transition to condensate
AML can be defined as the increment in P=T required to

double p0, that is also of OðN�½�=ð1þ�Þ�Þ. The preceding
ideas are illustrated for � ¼ 1 in Fig. 1 where p0=P is
plotted versus P=Pc for two values of N. The power
distribution was calculated for a sawtooth modulation
function V ¼ Mjt=�Rj, t � �R=2 (neglecting the small
contribution of modes with " >M=2) as a typical gain
modulation profile that allows condensation, and two val-
ues of N. The graph for smaller value N ¼ 100 (left panel)
exhibits the smooth transition at Pc clearly, compared to
the sharp transition that is apparent in the right panel
calculated for N ¼ 106.
The mode condensation is manifested by the creation of

a strong narrow component in the waveform. A further di-
rect consequence of the condensation is a sharp rise in the
coherence time of the AML pulse. Below the condensation
threshold, the pulse consists of an incoherent combination
of a large number of modes so that its coherence time is
shorter by N than the condensate pulse coherence time.
We turn to consider the borderline case � ¼ 2. This case

is of high interest as it corresponds to the standard practice
of sinusoidal modulation. It also exhibits interesting AML
properties since the infrared divergence of the integral in
Eq. (7) is only logarithmic

Z �ð"Þd"
"� g

�� c2N

M
log

jgj
M

: (11)

As a consequence, there is an exponential enhancement of
the ground-state power

p0=pn � eð2�=c2ÞðPM=NTÞ (12)

(for n � 1). For �< 2, the condensation threshold Pc is
proportional to NT=M; for cavity power values of this
order of magnitude, the exponential factor in (12) is
bounded so that no condensation occurs when � ¼ 2, as
claimed above. Nevertheless, a logarithmic enhancement
in the pumping to P� N logN will make p0 of the same
order of magnitude as in the �< 2 condensate phase,
achieving limiting width AML pulses. In contrast with
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the true condensation, the crossover to ground-state domi-
nance does not occur for a constant power per mode, and is
therefore never sharp.

The AML properties for � ¼ 2 are shown in Fig. 1, and
compared with those exhibiting true condensation. For
moderate value of N, there is little qualitative difference
between the two cases, while for large N the condensate
AML system shows a sharp buildup of power in the
ground-state eigenmode at P ¼ Pc, while the � ¼ 2 sys-
tem shows only a smooth increase of p0. The quasicon-
densation occurs for a much larger P, but since the
transition power factor is logarithmic, it is still attainable
for such a large value of N.

When �> 2, � < 0 and the integral in (7) diverges for
small g as jgj�. It follows that Eq. (10) can always be
solved with a negative value of g, and mode condensation
does not occur. In particular, when �> 2, the power
needed to obtain the limiting width AML pulses is larger
by a factor of OðN��Þ than that needed for �< 2.

We generalize our result for the case of nonzero chro-
matic dispersion �d, by showing that the power distribution
depends on it very weakly, as long as it is not much larger
than the gain filtering coefficient �g. This result relies on

the validity of Eq. (10) in this case; to establish it, we
express the solution of the master equation (1) as

c ðt; �Þ ¼
Z �

�1
eðÔ�gÞð���0Þ�ð�0Þd�0 (13)

where eðÔ�gÞ� is the operator exponential, whose position
representation is the Green’s function of the operator. The
overall power can then be written as

P¼
�Z

jc ðtÞj2ðdt=�RÞ
�

¼
Z
ðd�=�RÞd�0d�00heðÔy�gÞð���0Þ�ð�0Þ�eðÔ�gÞð���00Þ�ð�00Þi

¼2T
Z �

�1
d�0TrðeðÔy�gÞð���0ÞeðÔ�gÞð���0ÞÞ (14)

where Tr stands for operator trace. When �d ¼ 0, O and
Oy commute so that the exponentials can be combined, and
the integral over time carried explicitly in the last equality,

giving the inverse of 2ðÔ� gÞ, whose trace is expressed in
terms of the eigenvalues in (5). This is not possible when
�d � 0, but we can derive Eq. (10) directly under the
assumption N � 1 using the Weyl operator calculus
[23]. In the Weyl calculus, the trace of a product of
operators is expressed as a phase-space integral of the
product of their Weyl representations. The Weyl represen-

tation of Ô is Oðt;�Þ ¼ �ð�g � i�dÞ�2 þ VðtÞ, where�
is the conjugate to t variable, and that of eÔ� is approxi-

mately eOðt;�Þ�, unless � is very large. Similarly, the Weyl

representation of eÔ
y� is approximately eOðt;�Þ��.

Therefore, for N � 1,

Tr ðeðÔy�gÞ�eðÔ�gÞ�Þ¼ ð1=2�Þ
Z
dtd�e2ðReOðt;�Þ�gÞ (15)

from which (10) follows immediately, as was to be shown.
Conclusion.—We have shown how BEC can be applied

to laser mode locking, offering an immense improvement
both in pulse shortening and in its coherence properties, at
the same time exhibiting a new class of phase transitions in
statistical light-mode dynamics.
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