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Noise-induced oscillations in fluctuations of
passively mode-locked pulses
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We study the fluctuations of pulses in mode-locked lasers using the statistical light-mode dynamics ap-
proach. The analysis is based on a decomposition of the laser waveform into three parts: solitary pulse, in-
tracavity noise continuum, and local overlap. We discover significant features in the fluctuation dynamics,
beyond those known in existing theories that disregard the continuum component of the waveform, most
notably oscillations in the autocorrelation functions of the pulse power and frequency parameters, and an
enhancement of the phase jitter diffusion constant. The theoretical results are corroborated by numerical
simulations. © 2010 Optical Society of America
OCIS codes: 140.3430, 140.4050.
The characterization of the statistical properties of
mode-locked laser pulses, such as fluctuations or jit-
ter in their power, frequency, timing, and phase, is
important for many practical applications from com-
munications to metrology. In a fundamental theoret-
ical study [1], Haus and Mecozzi developed a pertur-
bative approach to the analysis of passively mode-
locked pulses in a soliton laser with strong dispersion
and Kerr nonlinearity, modeled by the nonlinear
Schrödinger (NLS) equation perturbed by weak satu-
rable absorber and parabolic gain filtering terms and
weak noise. In the present work we find results ex-
amining this model in view of recently developed sta-
tistical light-mode dynamics (SLD) theory that de-
scribes the many-body phenomena of the laser mode
system by means of a thermodynamic analysis [2–5].

The SLD analysis has shown that the noise present
in the laser cavity generates a quasi-cw disordered
waveform permeating the entire cavity. The onset of
mode locking is a manifestation of a thermodynamic
disorder-order phase transition in the statistical
steady state. Then, in a typical waveform, the laser
power is divided in comparable parts between the ho-
mogeneous quasi-cw background and the narrow
high-intensity pulse [6].

In the present analysis we consider the previously
neglected stochastic backaction of the cw background
on the mode-locked pulse. The quasi-cw waveform is
a Gaussian process with a finite correlation time and
thus coherently interacts with the pulse, leading to
effects that are qualitatively different from those
generated directly by delta-correlated driving noise,
most prominently damped oscillations in the two-
time correlation functions, decaying with a time scale
set by the action of the saturable absorber. This fea-
ture of the pulse power evolution is reminiscent of
the relaxation oscillations phenomenon observed in
mode-locked lasers [7], but in our analysis we obtain
that the oscillations frequency is given by the nonlin-
ear round-trip phase accumulation of the mode-
locked pulse. The nonlinear phase plays a similar
role in the formation of the Kelly sidebands

[8]—continuum waveforms forced by pulse perturba-
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tion whose frequency is determined by a resonance
condition. Here we study the converse process, the ef-
fect of the continuum on the fluctuations in the pulse,
and find analogously that it is characterized by the
phase difference between the nonlinearly evolving
pulse and linearly evolving continuum. Another im-
portant consequence of the pulse-cw interaction is an
enhancement of the pulse power fluctuations correla-
tion time by the ratio of the total power to the pulse
power, and a corresponding enhancement of the
phase diffusion coefficient by the square of this fac-
tor.

We model the laser dynamics with the NLS equa-
tion together with weak ���1� saturable absorber
and spectral filtering terms, subject to the soliton
condition (nonchirped pulse), and weak ���1� noise:

�̇ = �i + ���1

2
�� + ���2�� + �g − i�0�� + ��, �1�

where dot and prime symbols stand for time and
space derivatives, respectively. The imaginary (dis-
persion and Kerr effect coefficients) in the right-hand
side of Eq. (1) are normalized in the standard manner
by choosing appropriate units of time, length, and
power. We also follow the convention [9], of incorpo-
rating the nonlinear phase �0 directly in Eq. (1). �� is
a white Gaussian noise with the autocorrelation
function ����z1,t1����z2,t2�

* �=2�2TL��z1−z2���t1− t2�,
where L is the cavity length and �2T is the total noise
power injection rate.

g is the net gain coefficient; our analysis pertains
only to lasers with slow saturated gain that depends
on the total intracavity energy P=����2dz. P is a ther-
modynamic quantity, and the detailed dependence of
g�P� is unimportant for the properties of the steady
state. In contrast, power fluctuations in the pulse and
the quasi-cw background interact with fluctuation in
the gain, and these depend on the local properties of
the function g near the mean value of the total power
[7,10]. Here we will make the simplifying assumption

that the gain is deeply saturated so that g varies very
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sharply in the vicinity of the mean value of P, and
the fluctuations in the total power are negligible.
When the rigid power assumption is relaxed, the
power fluctuations acquire an additional gain compo-
nent [10].

We assume that the parameters are chosen to al-
low for the existence of the mode-locked pulse whose
shape is approximately that of an NLS soliton �p that
can be described via four parameters [9]: power (en-
ergy) P, position Z0, phase �, and frequency (the in-
verse of the group velocity) V. The steady state pulse
power is P0, and we have the relations �0=P0

2 /8 and
g0=−�P0

2 /8, where g=g0+�g1. We note that according
to the chosen scaling P0

2 gives the peak power of the
pulse.

The cavity noise �� generates the quasi-cw wave-
form ��c whose dynamics away from the pulse is de-
scribed by the equation

�̇c =
1

2
�i + ���c� + �g0 − i�0��c + �, �2�

obtained from Eq. (1) by dropping the nonlinear
terms. The decomposition of the cavity waveform into
�p and �c is founded on the rigorous SLD analysis [4],
and the two waveform parts are connected via the
gain balance principle [6], which states that the
steady-state pulsed laser operation is possible only if
a consistent sharing of the available power with a
common intracavity gain exists.

The solution of Eq. (2) is obtained by formal inte-
gration in k space [4]; the mean power carried by ��c

is [6] �2TL2 /	2�g0� so that by the gain balance prin-
ciple P0= 1

2P�1+	1−8�2TL2 / ��P2��. Thus it becomes
apparent that while both � and � are chosen small,
the ratio � /	� has to be of O�1/L��1 to sustain gain
balance. This ratio also indicates the magnitude of
the fluctuations in the pulse parameters relative to
their steady-state values. We therefore define the fol-
lowing: P=P0+� /	�p�t�, V=� /	�v�t�, Z0=� /	�z0�t�
−�Vdt, �=� /	���t�+ 1

8��P2+V2−P0
2�dt.

The noise perturbation near the pulse is affected
also by the nonlinear interaction with the pulse
waveform, and it is not adequately described by Eq.
(2). We therefore introduce the full waveform ansatz
�=�p+��c+��1. We emphasize that although ��c is
small, it cannot be regarded as a perturbation, since
its total energy of order P implies strong interactions
with the pulse through the gain dynamics. On the
other hand �1, which is both local and small, is in ef-
fect a perturbation that can be neglected in the
steady state, but is important for the pulse fluctua-
tions.

Linearization of Eq. (1) yields for �1:

�̇1 + �xj
�p

ẋj

	�
= L1�1 + L2�1

* − i
1

2
	�v�p� + g1�p + f,

�3�

with implied summation over the four pulse param-
� 1 2
eters xj. The linear operators are L1= �i+�� 2�z
+2��p�2−P0
2 /8�, L2= �i+���p

2. The effective forcing f
= �i+���2��p�2�c+�p

2�c
*� is generated owing to nonlin-

earity by the overlap of �p and �c, and it is indeed
nonnegligible only around the pulse. The gain fluc-
tuations are obtained from the assumption of fixed
total energy: g1P=−	�P0

2p /4−�dz�p
*��+L1��c+�1�

+L2��c
*+�1

*��.
There is a considerable freedom in the definition of

�1, since an O��� change in one of the pulse param-
eters can be absorbed into it. Here we follow a soliton
perturbation theory convention, letting �1 be or-
thogonal to the discrete right eigenspace of the linear
operator acting on �1 [11]. The operator defined by L1
and L2, which is often written as a matrix operator in
the real-imaginary basis [12], breaks the full symme-
try of the NLS equation and has only two zero eigen-
values, corresponding to translation (position) and
phase symmetries, while its two other eigenvalues,
associated with the power and frequency, are O���.
The symmetry breaking leads to the splitting of the
two two-dimensional Jordan blocks of the linear NLS
operator into two pairs of nearly degenerate eigen-
functions. The linear operator acting on �1 in Eq. (3)
contains, in addition to L1 and L2, a nonlocal rank-
one operator generated by the gain fluctuations term
g1. The left eigenfunctions of the full linear operator
are given to O��� by 	p=q− i��1−P0 /P�q, 	z0

= iqz
+�qz, 	�=q− i��1−P0 /P�q+ i2��q−P0zqz /2�, 	v= iqz
+�qz+�P0zq /3, where q and qz are the right eigen-
functions of the NLS operator corresponding to phase
and position, respectively [12].

The inner products with the left-hand side of Eq.
(3) yield equations of motion for linear combinations
of the power-phase and frequency-position coupled
parameter pairs. After linear elimination we obtain

ṗ = − �
P0

3

4P
p − 	�
 dzq Re�f +

P0

P
��̇c − f�� ,

�̇ =
2

P0
	�
 dz�q −

1

2
P0zqz�Im f,

v̇ = − �
P0

2

6
v − 	�
 dzqz Im f,

ż0 =
2

P0
	�
 dz�zq�Re f, �4�

where �+L1�c+L2�c
*= �̇c− f has been substituted in

the equation for p.
As expected, the dynamics of the power and fre-

quency has a restoring force so that they evolve to
stationary processes. The statistical properties of
these processes are described via the two-time corre-
lation functions, which we calculate by substituting
�c into Eq. (4) and using the assumption ��1 to ob-

tain [13]
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�vt+
vt
*� =

T

P0
�e−�P0

2/6�
� + �
 dkk2Ik�
�� ,

�pt+
pt
*� =

2T

P0
� P

P0
e−�P0

3/4P�
� +
�

2 
 dkIk�
�� , �5�

with Ik�
�=sech2��k /2� / �k2+1�e−�P0
2�k2+1�/8�
� cos�P0

2�k2

+1� /8
�.
Each of the expressions in Eq. (5) includes two

terms: one decaying exponentially on a time scale
equal to the strength of the restoring force in Eq. (4),
and the other is a k integral term showing exponen-
tially damped oscillation. While the first term is well
known [1], being the autocorrelation of filtered white
noise source, the second term results from the abid-
ing interaction of the pulse with the cw background,
which itself has a finite correlation time.

The time dependence of the oscillating terms in the
p and v autocorrelation functions is shown in the left
panel of Fig. 1 for P0=P=1 and �=0.1. The oscilla-
tions frequency is determined by the phase accumu-
lation per round trip P0

2 /8, while the exponential
damping with a rate given by the saturable absorber
action �P0

2 /8 is augmented by k-integration induced
cancellations, which amount to an additional power
law damping proportional to 
−1/2 for large 
.

Since the position and phase correspond to exact
symmetries of the system, their evolution experi-
ences no restoring force, and their fluctuations are
linear diffusion processes, driven both directly by the
noise terms of Eq. (4) and by the fluctuations in fre-
quency and power (respectively) determined from
Eqs. (5). However, the direct forcing is O�	�� smaller
than the coupling and therefore negligible. The con-
tribution of the oscillatory part of the p and v fluctua-
tions to the diffusion coefficients is O��� and there-
fore also negligible. As a consequence, the long-time
position jitter variance is ��z0�t��2�=12Tt /P0

3, repro-
ducing the result obtained in [1,14]. On the other
hand, the phase jitter variance ����t��2�=TP2t /P0

3 is

Fig. 1. (Color online) Left, theoretical analysis. Oscillatory
part of power (dashed curve) and frequency (solid curve)
correlations, in units of T /P0. The thin gray (red online)
curve shows the exponential damping with absorber-
dependent rate. Right, numerical simulation. Power auto-
correlation functions for a nonlinear coefficient of 2
�10−3 W−1, �=0.1, and steady-state pulse peak powers of
72 W (dashed, blue) and 162 W (solid red). The time scale
is in round trips.
larger by the factor �P /P0�2 than the result in [1],
which disregards the cw background. The relative en-
hancement of the phase fluctuations is due to the fact
that the mode-locked pulse contains only a fraction of
the total intracavity power, diminishing the restoring
force that constrains the power fluctuations.

The results of our theoretical analysis are substan-
tiated by numerical simulations of the mode-locked
laser dynamics, according to Eq. (1). The noisy cw
background inside the cavity was obtained from Eq.
(2), and the pulse waveform was defined by subtract-
ing it from the total waveform. The autocorrelation
functions of the pulse power were calculated from the
round-trip pulse power samples, and are presented
for two different steady-state powers in the right
panel of Fig. 1. As explained, there is a freedom in the
definition of the power fluctuations, and the defini-
tion used in the theoretical analysis is different from
the natural one to use in simulations [15] or experi-
ments. Nevertheless, the qualitative properties of the
fluctuations, with correlations showing weakly
damped oscillations, whose frequency depends on the
steady-state pulse peak power, are robust and clearly
visible in the numerical results.

In conclusion, we have demonstrated that the full
theoretical analysis of pulse fluctuations in mode-
locked lasers must be based on the statistical steady
state of the laser that includes the quasi-cw back-
ground nonperturbatively, as obtained by SLD. Two
important qualitative effects are revealed by this
analysis: the damped oscillatory character of the cor-
relation functions of the power and frequency pulse
parameters, and an enhancement of the phase jitter.
A numerical analysis has shown that the oscillatory
behavior is robust, observable for different defini-
tions of the pulse parameters.
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