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We study the multipulse formation in passive mode locking in the framework of the statistical light-mode
dynamics theory. It is a many-body theory that treats the complex many-mode laser system by statistical
mechanics. We give a detailed theory and experimental verification for the important case of multiple-pulse
formation in the laser cavity. We follow and extend our former work on the subject. We give a detailed analysis
with a rigorous calculation of the partition function, the free energy, and the order parameter in the coarse-
graining method within the mean-field theory that is exact in the light-mode system. The outcome is a
comprehensive picture of multipulse formation and annihilation, pulse after pulse, in an almost quantized
manner, as the noise �“temperature”� or the light power is varied. We obtain the phase diagram of the system,
showing a series of first-order phase transitions, each belonging to a different number of pulses. We also study
the hysteresis behavior, typical for such thermodynamic systems. We elaborate on the role of the saturable
absorber structure in determining the multipulse formation. The theoretical results are compared to experimen-
tal measurements that we obtained with mode-locked fiber lasers, and we find an excellent agreement.
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I. INTRODUCTION

When the light intensity of passively mode-locked lasers
is raised by increasing the pumping rate, the lasing is often
characterized by the formation of more than one pulse per
cavity round trip �1�. That is, at any given instant, the optical
energy is sharply concentrated around several points along
the cavity rather than at one point in a single-pulse regime,
or evenly distributed over the cavity in a continuous wave
�cw� operation. The phenomenon is observed in lasers with
different types of saturable absorbers �SA’s�, regardless of
their specific mechanism. However, the modeling of these
absorbers can be rather complex and requires the inclusion of
high-order nonlinearities �2–7�. In additive pulse mode lock-
ing �APM� �8�, the transmissivity has an even more complex
behavior. It has an oscillatory dependence on pulse input
energy, being based on interferometric conversion of the
phase difference between two paths or polarizations to an
amplitude modulation. Commonly used techniques of this
type are nonlinear polarization evolution �NPE� �9,10�, non-
linear optical loop mirrors �NOLM’s� �11�, and their variants.

A remarkable property often observed in multipulse op-
eration is the quantization of the pulse energies �2,12,13�.
That is, all pulses possess nearly fixed energy, which is al-
most independent of, for example, the pumping power. These
pulse quanta can move, one with respect to others, attracting
or repelling each other, and sometime form ordered struc-
tures, such as couples or bunches. These phenomena have
been lately receiving increasing attention �14–21�.

In several recent papers we presented a new statistical
mechanics approach for the many-mode laser �22–32�. This
statistical light-mode dynamics �SLD� theory revealed the
deep meaning of noise, which must be viewed in such many-
mode systems as an additional dimension, similar to tem-
perature in thermodynamic systems. Noise is essential for the
description of mode locking, and it has to be taken into ac-
count nonperturbatively, even when it is seemingly weak.

The mode system is treated as a many-body system, where
the laser modes are the degrees of freedom. Then, under-
standing the mode system would need a thermodynamicslike
approach, and quantities such as the free energy and entropy
are essential. An important outcome is that passive mode
locking is a first-order phase transition occurring when the
noise �“temperature”� or the light power is varied. It inher-
ently explains the power threshold needed for passive mode
locking.

We applied the SLD theory to the problem of multipulse
formation, and preliminary results have been published in a
previous Letter �26�. The main finding �26� was that multi-
pulse passive mode locking is well described as a thermody-
namiclike system with phases differing by the number of
pulses. Formation and annihilation of laser light pulse quanta
occur in thermodynamiclike pathway. In the P-T plane �P is
the intracavity power and T is the noise strength�, the phases
are separated by lines of first-order phase transitions, as
shown below in Fig. 4.

In this paper, we give a detailed study of the multipulse
statistical mechanics system, put the results of �26� on firm
foundations with a rigorous statistical mechanics analysis,
and also extend it and present several new results. The new
aspects include a detailed understanding of the validity of the
coarse-graining and the mean-field theory. We also elaborate
on the role of the saturable absorber function and the way its
oscillatory behavior guarantees multipulse formation.

The statistical mechanics analysis is based on an effective
model of the laser dynamics, where the power of the cavity
electric field in an interval, whose length is of the order of
the pulse width, is represented by a single degree of freedom.
�See Ref. �27� for an example of this approach.� The effec-
tive model is derived in Sec. II. It gives the actual laser
overall dynamics in a similar way to that of the Ising model
and ferromagnets �33�, containing the essential physics of the
system under study, rather than using the dynamics of the
individual degree of freedom. It is therefore more amenable
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to theoretical analysis. The crucial ingredient in the effective
model is the transmissivity function s, whose form deter-
mines the multipulse properties of the laser. We therefore
show �Sec. II B� how s can be derived from the properties of
the saturable absorber, and calculate explicit examples for
APM and similar types of saturable absorbers, which are
compatible with the results of �34,35�. We discuss the prop-
erties of s, and find their effect on the pulse properties.

The stochastic equations of the effective model are ana-
lyzed using the Fokker-Planck equation formalism, which
has provided many theoretical predictions regarding laser
light �in single-mode lasers� �36–38�. The analysis shows
�22,23� that the equations obey the potential condition �38�,
and the steady state measure is, therefore, immediately iden-
tified as the Gibbs distribution of an effective “Hamiltonian”
at temperature T. The analysis then proceeds along the stan-
dard route of calculating the free energy F, from which all
steady state properties follow. As shown in �26�, the model
can be studied using mean-field-like methods, which become
exact in the thermodynamic limit, where the ratio of the cav-
ity length to the pulse width tends to infinity. This calculation
is carried out in detail in Sec. III, where F is shown to be the
minimum of a Landau function f , which depends on a mul-
ticomponent order parameter, whose components are the
pulse powers. The study of the structure of f and the depen-
dence on the system parameters P and T yields all desired
information on the steady state properties of the laser and its
phase diagram. The behavior is particularly simple at high
pumping rate, where the intracavity power is much larger
than the typical pulse power.

For the experimental part, we describe in Secs. IV and V
the fiber laser system that was used to study the multipulse
mode-locking behavior. The saturable absorber part for the
passive mode locking is obtained in the fiber by NPE, to
which the present theory applies. The laser is supplied with
an external noise source; so both P and T are experimentally
tunable.

Then we proceed in Sec. V with theoretical results, which
are compared to the experiment regarding basic measured
thermodynamic properties. We first find the phase diagram,
which is shown to have phases differing by the number of
pulses. In the P-T plane the phases are separated by lines of
first-order phase transitions, signifying abrupt creation or an-
nihilation of a single pulse. Then we give the calculation and
experimental measurements of the order parameter and the
pulse energy as a function of the noise strength T. Experi-
mental phase diagrams and hysteresis curves are produced,
showing remarkable agreement with the theoretical predic-
tions.

We also touch on the hysteresis behavior of the system
analyzed and observed in the experiment. Here, we need to
study the properties of the metastable states given by the free
energy. Since, as shown, typical barrier heights between
metastable and stable states are much larger than the “tem-
perature,” the lifetimes of the metastable states are long, vir-
tually infinite, and strong hysteresis is observed. Using the
Arrhenius formula, hysteresis curves are derived which agree
excellently with experiments.

In the Appendix, a transfer matrix method is used, gener-
alizing our former work �27�, to study the system when the

number of active modes is large but finite, showing, in par-
ticular, that mean-field theory becomes exact in the thermo-
dynamic limit.

II. THE THEORETICAL MODEL

The dynamics of the slowly varying envelope � of the
cavity �of length L� electric field over many round-trip times
is governed by the master equation �8,39�

���z,t�
�t

= F̂�����z,t� + ��z,t� = �g���z,t�� + ��g + i�d�
�2

�z2

+ s̃„���z,t��2… + i�k���z,t��2���z,t� + ��z,t� . �1�

Here z is the spatial coordinate along the cavity, which is
bounded at 0�z�L, and t is a long scale time variable
defined over multiple round-trip times. The refractive terms

in the net gain functional F̂ are the chromatic dispersion and
Kerr effect, characterized by the coefficients �d and �k, re-
spectively, and the gain and loss terms are the spectral filter-
ing with coefficient �g, the fast saturable absorber character-
ized by the transmissivity function s̃����2� per round-trip
time, and the incremental net gain g̃ per round-trip time,
which depends on the entire wave form of � rather than its
instantaneous value. s̃�0� is set to zero by including in g̃ the
zero-field losses in the saturable absorber. The white noise
��z , t� stemming from spontaneous emission and other inter-
nal or external sources has an essential role. It is a complex
white Gaussian noise with covariance

��*�z,t���z�,t��	 = 2TL��z − z����t − t�� , �2�

where the constant T, measuring the rate of power injection
of the noise, is the effective temperature.

If written in Fourier �mode� space, Eq. �1� will take the
form

ȧm�t� = F̂�a�m + �̃m �3�

where ��z , t�=
mam�t�exp�i 2�mz
L

�, and F̂�a� is the Fourier

representation of F̂�����z , t� containing terms which are
coupled coherently to the mth mode am. The covariance of
the noise is now

��̃m
* �t��̃n�t��	 = 2T�m,n��t − t�� . �4�

In the literature the transmissivity function is often ap-
proximated by its linear behavior near zero field, s̃����2�
��s���2, which is appropriate when pulses are weak. Here,
we study the case where pulses are strong and the entire
functional form of s̃ has to be taken into account.

In ultrafast optics it is often the case that the dispersive
terms in Eq. �1� �chromatic dispersion and Kerr effect� are
much stronger than all others. Then pulses are well modeled
by nonlinear-Schrödinger-equation solitons:

�s�z,t� = A0 sech� z

zp
�exp�− i

��d�
zp

2 t� , �5�

where the amplitude A0 and pulse width zp are related by the
soliton area relation
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A0
2zp

2 = 2
��d�
�k

�
B

2
.

The soliton power is 2A0
2zp=B /zp, and is determined dynami-

cally, as discussed below.

A. The coarse-grained master equation

In order to facilitate the analysis, we proceed to construct
an effective master equation motivated by the energy rate
analysis that was developed in �5�. There, a rate equation for
the pulse or cw energy is constructed from Eq. �1� by inte-
grating over the whole cavity duration under the assumption
that the laser is operating either in pulses or in cw mode. In
our study, we construct local rate equations for the power in
a short cavity interval.

Consider a cavity of a passively mode locked laser
sampled at constant times in each round trip. If mode locking
has occurred, one or more pulses occupy short cavity inter-
vals, but the optical signal pervading most of the intervals is
a noise-generated cw. To describe such a hybrid state, the
cavity is divided into N intervals, whose size � is chosen to
be large enough to completely contain a short stable pulse. N
must be chosen to equal the number of active modes in the
cavity �40�, and in multimode lasers it is much larger than 1.

A rate equation is constructed to describe the energy in
each of the intervals, whether it contains a pulse or cw back-
ground. In this way, the energy of the continuum is not rep-
resented by a single degree of freedom as in �5�, but by
many. We will show that when noise is present the con-
tinuum carries essentially all the entropy �27�, and hence it is
crucial that it is represented by many degrees of freedom.

From Eq. �1� and its complex conjugate we derive the rate
equation for the energy

xm�t� = 
m�

�m+1��

���z,t��2dz� �6�

in an interval m=1, . . . ,N, under the assumption that there is
no overlap of intervals:

�

�t
xm = 2 Re 

m�

�m+1��

��*F̂���� + �*��z�,t��dz�. �7�

The right-hand side of the last equation contains two
terms that need evaluation. To evaluate the first, we assume
that the form of � belongs to a one-parameter set of func-
tions �for example, the soliton function �5��, and that the
interaction between different intervals is weak enough that
there is no coupling between the intervals; then the integra-
tion can be carried out, and the first term can be rewritten as
s�xm�xm+g�
xi�xm. s�x� is the effective nonlinear gain for the
energy in the interval �which depends on s̃ but also on the
parabolic gain, Kerr effect, etc.� and g is the overall net gain
�originating from the slow amplifier and effective linear
losses�. By properly modifying g, one can always set s�0�
=0.

The second term contains the noise, and is evaluated by
calculating the corresponding noise-induced drift Dm,noise-ind
�which is the part of the drift coefficient Dm that stems from

the noisy term� and the diffusion matrix Dm,n of the Fokker-
Planck equation �see �38��.

Dm,noise-ind = lim	→0
1

	�t

t+	

2


Re
m�

�m+1��

�*�z�,t����z�,t��dt�dz�� , �8�

Dm,n = lim	→0
1

	��t

t+	

2 Re 
m�

�m+1��

�*�z�,t����z�,t��dz��

 �

t

t+	

2 Re 
n�

�n+1��

�*�z�,t����z�,t��dz��� . �9�

The noise-induced drift is calculated with the aid of the Fou-
rier representation of the wave envelope and the noise �Eqs.
�3� and �4��:

2 Re 
m�

�m+1��

�*�z�,t����z�,t�dz�

= 2 Re 
m�

�m+1��



m,l

N

am
* �t���̃l�t��exp�i

2��l − m�z
L

�dz�

= 2 Re 
t

t�
m�

�m+1��



m,l

N

�F̂�a�m
* + �̃m

* �t����l�t��


 exp�i
2��l − m�z

L
�dz�dt�. �10�

Taking the average will result simply in 2NT�=2TL.
The diffusion coefficient is calculated in a straightforward

manner, and the resulting coefficients finally take the forms

Dm = s�xm�xm + g�
 xi�xm + 2TL , �11�

Dm,n = 2TLxm�m,n. �12�

An energy rate equation equivalent to Eq. �7� can be writ-
ten, which leads to the same drift and diffusion coefficients:

dxm

dt
= s�xm�xm + g�
 xi�xm + 2TL + �xm�m�t� . �13�

The �m are independent real Gaussian white noise processes

satisfying ��m�t��̃n�t��	=4TL�m,n��t− t��, and the last term
multiplying the noise is in the Ito interpretation �38�.

We will now derive the form of s under the assumption
that the refractive parts �Kerr effect and dispersion� in Eq.
�1� are much larger than the other terms, and therefore the
pulses have the solitonic form of Eq. �5� and only their en-
ergy is determined from the gain and loss. In this case, be-
cause the pulse is not chirped, the refractive terms do not
contribute to the integration in �7�, and if a pulse occupies
the mth interval, its energy xm can be represented in terms of
the pulse duration by xm=B /zp. The rate equations then take
the form �13� with
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s�xm� =
2

xm
�

m�

�m+1��

s̃���s�2���s�2dz� −
�gxm

3

6B2 � , �14�

which can be expressed by means of zp and hence by xm.
When xm is small, s�xm� tends to zero, as is appropriate in the
case that the mth interval belongs to the continuum.

We assume that the interaction between different intervals
is weak enough that the equations of motion for the xm’s are
not coupled, other than through the gain term g. The gain
term is responsible for maintaining a mean power P
=
m=1

N xm inside the cavity. This power is determined by the
pumping by stimulated emission. It was shown in �27� that,
once P is given, the specific form of g is unimportant in the
thermodynamic limit, N→�; this result can be phrased as a
statement of equivalence of statistical ensembles, the fixed
energy and the variable energy ensembles. In the analysis
here we therefore impose a constraint of fixed power P, sim-
plifying the calculation without any loss of generality. g be-
comes then a Lagrange multiplier for the power constraint

Equation �13� is the coarse-grained master equation. Since
it satisfies the potential condition �38�, the steady state dis-
tribution is

��x1, . . . ,xN� =
1

ZN
e−H�x1,. . .,xN�/2T��P − 


m=1

N

xm� . �15�

This is the statistical mechanics Gibbs distribution for the
Hamiltonian

H�x1, . . . ,xN� = − L

m=1

N

S�xm�, S�x� = x

s�x��dx�, �16�

and ZN is the corresponding partition function. In Sec. III,
we analyze this distribution using tools from statistical me-
chanics, but first we study the properties of the effective
nonlinear gain function s�x�.

B. Nonlinear saturable absorber

The purpose of this section is to show different transmis-
sivity functions s̃ derived in the past, where the saturation
deviates from the standard linear dependence on intensity.
The resulting form of s�x�, the effective nonlinear gain, has a
major effect on the mode-locking behavior, as we find below.
In this section we obtain specific examples of s�x�, while in
the rest of the paper we keep the discussion as general as
possible in regards to s.

In general, the transmissivity depends on the exact
method of the saturable absorber used for mode-locking. In
the NOLM method �11�

s̃����2� =
1

2
�1 − q cos�����2

Isat
+ 0�� , �17�

where q is the modulation depth, 0 accounts for linear bias,
and Isat is the saturation intensity. Other methods of APM,
such as the polarization rotation technique �used in our ex-
periments�, are described by more complex models, but
eventually they have an oscillating form which resembles the
one introduced in the equation above �see, for example,
�10��.

The effective nonlinear gain can be calculated numeri-
cally using Eq. �14� for solitonic shaped pulses, and the out-
come is an oscillatory function with exponentially decaying
oscillations �34,35�, as seen in Fig. 1. The same behavior has
been measured experimentally by injecting soliton pulses
with different energies into the loop and measuring their out-
put energy �34�. We note that the same qualitative structure
holds for other pulse forms, and that changing 0 does not
change the behavior either.

It is shown below that, when s is oscillatory, the pulse
powers in the multipulse regime always lie in the active in-
terval between xs, the first maximum of s�x�, and xf, the
second minimum, while in the limit of a large number of
pulses the pulse powers approach the asymptotic value x*,
given implicitly by x*s�x*�=S�x*� �see Fig. 1�. Since it is
important to model s accurately only in the active region, we
can use a polynomial approximation.

Many previous studies �see, for example, Ref. �39�� con-
centrated on the weak pulse limit, where s̃ can be approxi-
mated by its Taylor expansion near zero intensity:

s̃����2� = �s���2. �18�

The effective nonlinear gain for a solitonlike pulse is then

s�x� =
1

3B
�2�s −

�g

B
�x2. �19�

In this regime mode locking yields a single pulse �27�, a
result that holds in general for monotonic s functions, as we
show below.

However, in every physical laser system s̃ must saturate
�or oscillate�. Equation �19� then tells us that s can no longer
be monotonic due to the spectral filtering; hence, breakup of
pulses will always occur.

III. MEAN-FIELD CALCULATION OF THE FREE
ENERGY

A. The partition function

Since the steady state distribution of the energy variables
xm is an equilibrium distribution �Eq. �15��, we carry out the
analysis by calculating the partition function ZN, obtained by

x

s(
x) s(
x)

x
f

x
s x*

FIG. 1. �Color online� Left: The effective nonlinear gain func-
tion calculated numerically from Eq. �14� with the transmissivity
�17� �q=0.8, 0=�g=0�. Right: A polynomial fit s�x�=ax2−bx3

+cx4. The figure shows the points xs ,xf ,x
*, the first maximum,

second minimum, and asymptotic pulse strength, respectively, and
the active region, bold black, for the multiple-pulse regime.
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integrating over all possible x configurations,

ZN�P,T� = �dx�exp� 1

2T


i=1

N

S�xi����

i=1

N

xi − P� ,

�20�

where �dx� denotes integration with respect to all x’s from
zero to infinity.

Because of the power constraint, the amplitude of x at
most sites is O�1/N�, for which the effective nonlinear gain
is negligible. These sites will be referred to as the continuum.
We now make the assumption that the main contribution to
ZN comes from configurations where at most a finite number
m of x variables are O�1�, i.e., pulses, while the rest are
O�1/N�. This assumption, which allows for the calculation
of the free energy by mean-field methods, is justified by the
rigorous calculations in the Appendix.

This assumption leads to the following calculation:

ZN�P,T� �  �
i=1

m

dxi exp� 1

2T


i=1

m

S�xi��

 �

i=m+1

N

�� 

i=m+1

N

xi − �P − 

i=1

m

xi��
� �

i=1

m

dxi exp�− N�−
1

2NT


i=1

m

S�xi�

− ln�P − 

i=1

m

xi��� . �21�

In order to evaluate the last integral in Eq. �21�, we use the
saddle point approximation. As N→�, the main contribution
to the integral is from the global minimum of the thermody-
namic potential

fm�x1, . . . ,xm� = −
1

2NT


i=1

m

S�xi� − ln�P − 

j=1

m

xj� . �22�

In order to get a nonzero minimizer, T�2NT must have a
finite limit �we shall see that T plays the role of temperature
in the system and hence it will be referred to as such�. The
necessity of rendering the parameters in this problem N de-
pendent has been discussed before in �27�.

We denote the global minimum of fm by Fm�P ,T� /T. Let
n be the smallest m for which the minimum of Fm�P ,T� with
respect to m is attained, i.e., the minimizer of fm is
�x̄1 , . . . , x̄n ,0 , . . . ,0�. Our statement, which will be proven in
the Appendix, is that ZN takes the asymptotic form

ZN�P,T � �
1

N!
AN�P,T �e−NFn�P,T �/T, �23�

i.e., Fn is the free energy per degree of freedom. Moreover, n
is the number of pulses per roundtrip and x̄1 , . . . , x̄n are their
powers, and n=0 corresponds to a cw. Notice that, since
equilibrium thermodynamics is applicable, the free energy
structure obeys the relation

Fn�P,T� = E − TS , �24�

where E=−
i=1
n S�x̄i� is the mean energy per degree of free-

dom, and S=ln�P−
i=1
n x̄i� the entropy per degree of free-

dom.

B. Properties of the thermodynamic potential

Evidently, the thermodynamic potential fm introduced in
Sec. III A is the crucial part that determines the thermody-
namics. Here, we analyze this function and study its general
properties. By making a plausible assumption, the structure
of f can also be used to study dynamic properties, such as
hysteresis.

An example of the thermodynamic potential is drawn in
Fig. 2 for m=2. The optimization problem we need to tackle
is to find the global and local minima of fm subject to the
constraints xi�0, ∀i, and 
i=1

m xi�P. The global minima will
correspond to the stable states and the local ones will corre-
spond to metastable states. We also look for saddle points
and local maxima in order to understand the dynamics. These
points are permutations of vectors of the form
�y1 , . . . ,yn ,0 , . . . ,0� �where n can take any value between 0
and m�. The yi’s can be found using �i fm=0, i�n, which
leads to the n coupled equations

s�yj��P − 

i=1

n

yi� = T, 0 = 1, . . . ,n . �25�

These equations can be solved easily numerically, given a
specific form of s, when n is small, and by substituting the
solution into the square matrix of second-order partial de-
rivatives the type of the critical point can also be determined.

As T and P are varied the values of f at the minima
change, and at some point may exchange stability. The points
where the identity of the global minimum is exchanged have
the thermodynamic significance of a first-order phase transi-
tion. It often happens that the transition involves an increase
or decrease in the number n of nonzero x values at the mini-
mizer. Then phases are labeled by the number of pulses.
Generically, the points of coexistence form one-dimensional
curves in the T−P plane. See Fig. 4 for an example of a
phase diagram.

In the next section, we describe the multipulse phase dia-
gram for the s that corresponds to the nonlinear SA, but

FIG. 2. �Color online� Thermodynamic potential f2�x1 ,x2�. In
the right figure, f2 has local minima at (X�1� ,X�0�), (0,X�1�) and
�0,0� and a global minimum at (X�2� ,X�2�). In the left figure, the
function is plotted for higher temperature; thus its global minima
are now at (0,X�1�) and (0,X�1�). X�n� is given in Eq. �26�.
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several interesting properties of the thermodynamics can be
deduced on general grounds.

�1� For every positive temperature T, there exists a thresh-
old energy P0�T� such that for P� P0�T� the global mini-
mum is the zero configuration, i.e., cw operation.

�2� Furthermore, since S�x� increases more slowly than
linearly at x=0, the zero configuration is a local minimum
for any positive T, i.e., the cw state is always metastable.
This property explains the “self-starting” threshold �31,32�.

�3� As T increases, the total pulse power 
i=1
n x̄i decreases,

causing the continuum power and the entropy to increase.
�4� When s is monotonic, the global minimum of f is

never attained for configurations with n�2, i.e., mode lock-
ing can result only with a single pulse.

�5� When s�x� is not monotonic and has a global maxi-
mum at the point xs and a positive minimum at xf �xs, mul-
tipulse operation occurs for sufficiently large P and low T. In
this case, the minimizer of f consists of two possible values

of xī, one of which is smaller than xs and occurs at most
once, and the other is between xs and xf. This is also true for
the local minima of f .

An interesting special case is where all the pulse powers
are equal, a configuration often observed experimentally �see
Sec. V�. In this case, the metastable n-pulse configuration
takes the form (X�n� ,X�n� , . . . ,X�n� ,0 , . . . ,0), where

s„X�n�…�P − nX�n�� = T . �26�

For s functions of the form defined in item 5 of the above
list, X�n� must lie in the interval xs�X�n��xf if n�2, and
the minimum becomes a saddle when X�n� hits the interval

end points. The thermodynamically stable state is obtained
by minimizing

fn„X�n�,X�n�, . . . ,X�n�… = −
1

T
nS„X�n�… − ln�P − nX�n��

�27�

with respect to n. When P is much larger than the power of
a single pulse, the minimizer approaches x*, given implicitly
by

x*s�x*� = S�x*� . �28�

This result explains the almost constant pulse power ob-
served experimentally in the multipulse regime �see Sec. V�.
Linearizing Eq. �26� near x*, it also follows that in the mul-
tipulse regime the phase transition curves approach straight
lines �26�,

T = s�x*� − �n − 1/2�S�x*� , �29�

for the transition between �n−1�-pulse and n-pulse configu-
rations.

IV. THE EXPERIMENTAL SETUP

The experimental system is schematically described in
Fig. 3. It consists of a fiber ring laser with passive mode
locking �PML� by the nonlinear polarization rotation tech-
nique �9,13�. The external noise source was derived from an
amplified spontaneous emission system that was injected into
the cavity from an external source. The control of its strength
provided the temperature tunability. The laser round-trip time

980/1550 nm
WDM Coupler

Pump

PC1

PC2

Erbium-Doped Fiber

Polarizer

Isolator

95/5 Output Coupler

80/20 Noise Input
Coupler

To
Sampling

Oscilloscope
and

RF Power
Meter

Isolator

External Noise
Source

Filtered
ASE

Source

VOA

High
Power
EDFA

FIG. 3. Schematic of the experimental setup. The fiber ring laser consisted of an erbium-doped fiber amplifier �EDFA� pumped by a
980 nm laser source through a wavelength-division multiplexing �WDM� coupler, isolators that assure oscillations in one direction only,
while the polarization controllers �PCs� and the polarizer provide the effective saturable absorber action �by utilizing nonlinear polarization
rotation in the fiber cavity�. The external noise source for the tunable noise �“temperature”� is constructed from a filtered amplified
spontaneous emission �ASE� source, high-power EDFA, and variable optical attenuator �VOA�.
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was 100 ns, corresponding to approximately 20 m of total
cavity length, including a 4.3-m-long erbium-doped fiber
amplifier with small signal gain of 6 dB/m. The saturable
absorber was provided by nonlinear polarization rotation and
polarizers, as was formerly described �25,26,29�. By proper
adjustment of the polarization controllers �PCs� PML opera-
tion was established with generation of subpicosecond
pulses. Increasing the pumping power generated multiple
pulses in the cavity, a phenomenon that has been frequently
observed in a variety of PML fiber lasers �1,9,12,13�. The
pulses were often formed in stable bunches with almost
equal spacing, which ranged from a few to hundreds of pi-
coseconds, depending on the positions of the PCs, the pump-
ing, and the injected noise level.

As the noise or pumping level was varied, two types of
responses of the pulse bunch were observed: variations in the
spacing between adjacent pulses and variations in the pulse
energy. Therefore, depending on the position of the PCs,
three distinct regimes of bunched pulse operation were ob-
tained. The first, and the most common, was the regime
where both types of response were observed. In the second
regime the multipulse bunch contracted or expanded while
pulse energies remained constant, and the third regime was
characterized by a fixed bunch pattern while pulse energies
were varied.

V. EXPERIMENTAL VS THEORETICAL RESULTS

In this section, we give results of the theoretical analysis
regarding thermodynamic features of the multipulse laser

system, along with experimental measurements. We show the
phase diagrams, the multiphase transition dependence on
noise and power, and the hysteresis behavior. The agreement
between the theory and the experiment is remarkable; thus
showing the power and the validity of the thermodynamic
SLD approach.

A. Steady state and phase diagram

We start with the theoretical part, which was performed
using the polynomial approximation described above. Figure
4 shows the phase diagram, where each phase is labeled by
the number of pulses. The separation lines represent first-
order phase transitions. Figure 5 shows the individual pulse
power as dashed lines, and the order parameter

Q = 

j=1

N

x̄j
2 = nX�n�2 �30�

as a full line, as a function of the noise power. Q is a useful
quantity because it is directly proportional to the measured rf
power, shown in the experimental graph.

The experimental part of the phase diagram in Fig. 4 was
measured as follows. For several pumping powers the in-
jected noise level was raised gradually from zero, the pulses
disappeared one by one, and the transition temperatures and
average output optical powers were recorded. �Such a behav-
ior was previously observed as the pumping power was de-
creased �2,13��. The noise spectral density values that were
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retical �left� and experimental
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eter Q=nX�n�2 or rf power �solid
line� and the mean pulse energy
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the total noise power 2NT �pro-
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0 2 4 8 10 12
0

5

10

15

20

2NT

P

n=0

1
2

3
4

5
6

0.2
0

1.7

Noise Spectral Density [mW/nm]

In
tr

ac
av

ity
O

pt
ic

al
P

ow
er

[m
W

]

n=0
1

2
3

4
5

6

FIG. 4. �Color online� Experimental �right� and theoretical �left� phase diagrams. The theoretical graph shows the number of pulses as a
function of the intracavity energy P and the total noise power 2NT. The curves of discontinuity have the thermodynamiclike meaning of
first-order phase transitions. The straight lines are asymptotes of the transition lines for P�xs �Eq. �29��.

STATISTICAL LIGHT-MODE DYNAMICS OF MULTIPULSE… PHYSICAL REVIEW E 76, 031112 �2007�

031112-7



measured by a spectrum analyzer have to be multiplied by
100 to account for the couplers and other internal losses. To
obtain the total noise power that perturbs the laser modes
�2NT in our theoretical calculations�, those measured values
also need to be multiplied by the total gain bandwidth of the
laser and a coupling factor of the noise power to each cavity
mode.

The experimental results presented in Fig. 4 were ob-
tained in the first operation regime, but the structure of the
phase diagram was found to be identical in all the regimes
mentioned above. Figure 4 demonstrates good agreement be-
tween theory and experiment.

The theoretical and experimental plots of the order param-
eter Q �Eq. �30�� and the energy per pulse as functions of the
injected noise level �gradually increased from zero� for a
fixed pumping power are shown in Fig. 5. Experimentally,
they were obtained by measuring the laser output with a fast
photodiode and a rf power meter �25� or a sampling oscillo-
scope �all having 50 GHz bandwidth�, respectively. The
pulse energy is nearly constant, with deviations of about 5%.
These deviations are well described by the theory. The re-
sults of Fig. 5 were obtained in the third operation regime
�constant spacing regime described above, where pulse en-
ergy changes are most pronounced�.

B. Metastable states and hysteresis

Although our mean-field analysis pertains, strictly speak-
ing, only to the steady state, by making a plausible assump-
tion we can use it to study the hysteresis curves of the
system—a dynamical property. The free energy is derived
from the thermodynamic potential f by saddle point integra-
tion, as shown in the Appendix, which receives its dominant
contribution from the vicinity of the global minimum. How-

ever, the local minima are surrounded by configurations with
very small relative probability, so that, if the system is pre-
pared in a configuration corresponding to a local minimum,
it may stay trapped there for a very long period; the configu-
ration is metastable. According to the Arrhenius formula, the
lifetime of the metastable state is proportional to exp�Eb /T�,
where Eb is the height of the potential barrier that separates
the metastable state from the stable one. Since the thermo-
dynamic potential is proportional to N, the lifetime diverges
as exp�N /T� in the thermodynamic limit, which means that it
becomes very large even for moderate values of N, whereas
N in multimode lasers is typically 106 or larger. Therefore, a
small error is incurred by assuming that the lifetime of a
metastable state is infinite, and that the system escapes only
when external parameters are changed so as to make the
critical point unstable �a saddle or a maximum�. An excep-
tion to this scenario is the metastable state at zero pulses, i.e.,
cw operation. This configuration, as shown above, is stable
for any finite T, so that escape may occur only for very low
noise levels. This problem, known as the self-starting prob-
lem in passive mode locking, is outside the scope of this
paper �31,32�.

We now use this argument to compute hysteresis curves
for multipulse mode locking under conditions where pulse
powers are all equal. As shown above, metastable states are
characterized by pulse powers between xs, the position of the
first maximum of s, and xf, the position of the second mini-
mum. Therefore, on increasing power or decreasing noise
level, the pulse powers increase until they reach xf, and then
a new pulse is formed, whereas on decreasing power or in-
creasing noise level, the pulse powers decrease until they
reach xs, and then a pulse is annihilated.

Figure 6 shows theoretical and experimental results for
the order parameter Q and the individual pulse power as a
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retical �left� and experimental
�right� hysteresis curves, showing
the order parameter Q=nX�n�2, or
rf power �above�, and X�n�, or
pulse power �below�, as a function
of increasing and decreasing noise
levels.

WEILL et al. PHYSICAL REVIEW E 76, 031112 �2007�

031112-8



function of noise level. Typically for first-order phase transi-
tions, the system exhibits hysteresis. The number of pulses at
any point �T ,P� depends on the precise path that led to it. In
particular, increasing T leads to a different Q�T� curve than
decreasing it. In the T lowering direction, the curves are
distinguished by the starting point of the number of pulses.
The agreement between theory and experiment is again very
good.

VI. CONCLUSIONS

We conclude by noting how powerful the combination of
statistical mechanics and laser physics can be, leading to a
new view and findings that can be significant to both fields.
The many-mode light system is found via the SLD approach
to exhibit rich thermodynamiclike behavior with phase tran-
sitions, while providing the unique possibility for experimen-
tal verification in relatively simple laser systems. The theory
was able to explain the basic long-standing question of the
mode-locking threshold that is nothing but a first-order phase
transition, and many other properties. Very recently, we also
showed �29� critical behavior upon adding to the laser exter-
nal pulses that match the repetition rate of the laser cavity;
they act like the external field in magnetic systems or pres-
sure in vapor-liquid-solid systems.
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APPENDIX: TRANSFER MATRIX CALCULATION

The purpose of this section is to establish Eq. �23� using
saddle-point integration. The procedure is a straightforward
generalization of that of �27�, and is presented in outline. The
calculation is based on the recursive version of Eq. �20�,

ZN�P,T � = 
0

P

dx1eS�x1�/TZN−1�P − x,T � �A1�

as in �27�, and we show that, when N is large, the only
significant contribution to the x integration in the last equa-
tion comes from the vicinity of a finite set of values of x
which maximize the integrand, one of which is x=0. The
integration on other parts of the interval is exponentially
small in N. The case of a single maximizing point will be
shown to correspond to invariant measures concentrated on
cw configurations where the amplitude of all degrees of free-
dom is O�1/N�. This happens for small enough P or large T.
When there is more than one maximizing point, the typical
configurations are such that a finite fraction of the energy is
concentrated in a finite number of pulses, while the ampli-
tude of the others is still O�1/N�.

Following �27�, we study the case of large T �or small P�
by perturbation analysis. ZN

�0��P ,T� is then determined by the
behavior of S for small x, which takes the form �xk where
k�1 and � can also be negative. The perturbative calcula-
tion is very similar to the one of Ref. �27�, except that here
the power k need not be 2, and the result is

ZN
�0� =

PN

N!
e�N2−kPk

, � =
��k + 1��

T
. �A2�

We verify that ZN
�0� approximates Z for small enough P by

showing that it solves Eq. �A1� as long as the global mini-
mum x̄�P ,T� of the function f�P ,T ,x�=−S�x� /T−ln�P−x� is
zero. As discussed above, for any positive T there is thresh-
old power �P0�T�� below which the global minimum is x̄
=0. Hence

ZN�P,T� = ZN
�0��P,T�, P � P0�T� . �A3�

Equation �A3� establishes �23� for P�P0�T�. We now
wish to establish it for arbitrary P. Suppose inductively that
�23� holds for P�Pn−1�T�, the power needed to create n
pulses at noise level T. Substituting Eq. �23� in Eq. �A1�
gives the asymptotic equation

1

N!
AN�P,T�e−NFn�P,T� �

1

�N − 1�!  dx eNS�x�/TAN−1�P − x,T�


 e−�N−1�Fn�P−x,T�/T. �A4�

Denoting the part of the exponent proportional to N by −g, as
before, the integration in �A4� is concentrated near the global
minima of g, whose value is

min
x

g�P,T,x� � min
x

− S�x� + Fn�P − x,T�
T

= min
x1,. . .,xm

fm�x1, . . . ,xm� = Fn�P,T� . �A5�

It is left to show that AN is subexponential in N. The integra-
tion in Eq. �A4� receives its main contributions from the
neighborhoods of the minimizers x̄i of �A5� and from the
neighborhood of x=0. We denote these contributions by Ii,
i=1, . . . ,m, and I0, respectively. The saddle point integration
near x=0 gives

I0 �
1

�N − 1�!
AN−1�P,T�e−�N−1�Fn�P,T�

0

P

dx e−�N−1��g�1��x

�
eFn�P,T�

�g�1��
1

N!
AN�P,T�e−NFn�P,T�, �A6�

where we introduced g�1�= ���g /�x��x=0, which must be nega-
tive. The assumption that AN is subexponential in N was used
to approximate AN−1�AN. The saddle point integration near
x̄i gives

STATISTICAL LIGHT-MODE DYNAMICS OF MULTIPULSE… PHYSICAL REVIEW E 76, 031112 �2007�

031112-9



Ii �
1

�N − 1�!
AN−1�P − x̄i,T�e−�N−1�Fn�P,T�


 
−�

�

dx e−�N−1�gi
�2��x − x̄i�

2/2 �
1

N!
AN�P − x̄i�


 e−NFn�P,T��2��N − 1�
gi

�2� eFn�P,T� �A7�

with gi
�2�= ���2g /�x2��x�x̄i

, where AN−1�P− x̄i� is associated
with configurations with n−1 pulses.

Combining these results with Eq. �A4�, we get a linear
equation for AN whose solution is

AN�P,T� =
�g�1��

1 − eFn�P,T�
�2��N − 1�


i

AN�P − x̄i,T�
�gi

�2� .

�A8�

Using the induction hypothesis, it then follows that AN�P ,T�
is indeed subexponential in N, which shows that �23� holds
for any P.
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