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A comb optical filter based on the spectral Talbot effect in uniform low

reflecting fibre Bragg gratings is numerically and experimentally

demonstrated, relaxing the need for any chirp or equivalent phase

shifts between the gratings. It can be understood by the analogy

between the compression and rate multiplication of phase modulated

pulse trains and sampled fibre Bragg grating spectrum formation.

Introduction: In the spatial and temporal Talbot effects, a periodic

optical waveform that is modified upon propagation due to spatial or

temporal dispersion is recovered after a certain propagation distance,

called the Talbot length. An analogous effect was recently shown for

the spectrum of chirped fibre Bragg gratings (FBGs) [1]. It is the

spectral Talbot effect where the FBG chirp is the counterpart of

dispersion. Tuning of the chirp allows one to obtain different spacing

between the peaks of comb grating spectra [2]. To achieve an exact

analogy to the temporal Talbot effect, the length of each FBG in the

spectral case must be very small. Then, the grating chirp affects the

phase shift between the gratings rather than the phase variation within

the individual gratings. Therefore, chirped sampled FBGs give

approximately the same spectral Talbot effect as obtained by uniform

FBGs with properly chosen discrete phase shifts between the gratings

[3]. This effect was experimentally demonstrated in [4]. In the work

described in this Letter, we demonstrate an optical comb filter based

on the spectral Talbot effect that is implemented, under certain

conditions, using only uniform fibre Bragg gratings without any

chirp or equivalent phase shifts between the gratings that correspond

to the chirp. We confirm and demonstrate the method, numerically and

experimentally.

The spatial refractive index envelope of a FBG structure and the

grating reflection spectrum for low grating reflectivities are related by a

Fourier transform. This relationship was used for obtaining a comb filter

with a square envelope by writing sinc-like individual FBGs [5].

Analogously, the spectrum of an optical pulse and the pulse shape are

also related by a Fourier transform. For periodic pulses and periodically

spaced (sampled) FBGs, the spatial profile of uniform FBGs

corresponds in this analogy to the pulse spectral lines. It should be

noted that this analogy is valid for very short gratings. The addition of a

chirp to sampled FBGs is equivalent to propagation of a periodic pulse

train through a dispersive delay line [1]. We can therefore conclude that,

if the spatial envelope of the grating refractive index and the pulse

spectrum are identical, then the form of the individual peak in the

grating comb spectrum and the pulse shape will also be identical.

For low reflecting short uniform sampled FBGs, we can

approximately write the field reflectivity as

rðkÞ ¼
PN

s¼�N

rsðkÞ exp½2iðsþ N ÞknL� ð1Þ

where k¼ 2p=l is the wavenumber, l is the wavelength, rs is the

complex field reflectivity of the sth grating, n is the effective refractive

index, L is the distance between the sampled FBGs, and 2Nþ 1 is the

number of the gratings. We neglect in (1) multiple reflections between

the gratings. On the other hand, the field of periodic optical pulses can

be represented as a Fourier series:

EðtÞ ¼
PQ

s¼�Q

Fs expðisomtÞ ð2Þ

where Fs is the complex Fourier coefficients, om is the frequency space

between the spectral lines (modulation frequency), and 2Qþ 1 is the

number of the pulse harmonics. From comparison between (1) and (2)

we can see that the aforementioned analogy exists if the individual

grating spectra rm(k) does not depend on — or varies very slowly

with — the wavelength. This condition is met for very short gratings.

The propagation of the pulse in a dispersive medium adds to the

discrete spectrum Fs in (2) a phase js. According to the analogy, it

corresponds to adding the phase js to the complex reflectivity rs in (1).
It means that there is no necessity for a chirp in the sampled FBGs

to implement the spectral Talbot effect. It is sufficient to add to

each uniform grating the needed reflection phase js. Moreover, the
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effect, which we demonstrate here, does not require even those

additional phases.

Numerical simulations: We consider the analogy between the

compression of phase modulated pulses and the formation of a

FBG spectrum. In particular, for temporal sinusoidal phase

modulation of continuous-wave (CW) light, the discrete spectrum

is expressed as Fs/ Js(A) where Js(A) is the Bessel function of the

first kind and A is the modulation index. We calculated the spectrum

of 21 uniform FBGs with a length of 0.3 mm and a spacing of

1.018 mm. The modulation of the refractive index of the sth grating

was taken to be in the form of dns/ Js(A), A¼ 3.1 rad. The central

grating had reflectivity of 1.3%. The calculated spectrum and the

reflection phase are shown in Fig. 1. In contrast to temporal phase

modulation, the spectrum in the case of ‘spectral phase modulation’

is not constant, but represents the spectrum of an individual FBG.

The spectral phase is slightly different from pure sinusoidal function

as shown in Fig. 1. Sinusoidally phase modulated CW light can

be transformed to compressed pulses after propagation through a

line with a properly chosen dispersion. Analogously, a comb-like

spectrum can be obtained from the spectrum shown in Fig. 1 after

adding to each sth grating the reflection phase js¼Cs2L2=2 where

C is the chirp of the equivalent chirped FBGs. It was numerically

found that the spectrum can be optimally ‘compressed’ by chirped

gratings for C¼Copt¼ 379 306 m�2. The calculated spectrum of the

same uniform 21 FBGs with the added reflection phases js for

C¼Copt is shown in Fig. 2.

Fig. 1 Calculated spectrum and spectral phase of 21 uniform FBGs
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Fig. 2 Calculated spectrum of same 21 uniform FBGs as in Fig. 1 with
added reflection phases js

Filter implementation and experimental results: It was shown in [6]

that, for periodic pulse compression, propagation in a dispersive

element can be replaced by pulse rate multiplication by M chosen

from the condition that the distance (dispersion) in which the pulse

would be optimally compressed must be equal to an integer (or

fractional) Talbot length for a new frequency M fm. The grating

chirp corresponding to the fractional Talbot length in the temporal

case [6] can be written by analogy as CfT ¼ (m=p)(4p=L2), where m

and p are integers with no common factor (p¼ 1 corresponds to the
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integer Talbot effect). For the spectrum shown in Fig. 1, multiplication

by M is simply performed by writing only every Mth grating from

21 FBGs. Thus, the condition of ‘spectral compression’ (comb

spectrum) without any added discrete phase is: Copt¼CfT where L

in the equation for CfT is replaced byM L. In the experiment, we chose

M¼ 4, the grating spacing M L¼ 3.952 mm, m¼ 1, p¼ 2. The FBGs

were fabricated by UV laser (l¼ 244 nm) radiation through a phase

mask. The reflectivity magnitude and reflection phase of each grating

were controlled by a method similar to that described in [7].

The length of each grating was 0.3 mm. The calculated and measured

spectrum of the comb filter are shown in Figs. 3 and 4, respectively.

Note that, after multiplication and spectral interference between the

peaks, the wings in the spectral peaks (Fig. 2) disappear and the

reflectivity minimum reaches zero (Figs. 2 and 3).

Fig. 3 Calculated spectrum and group delay of comb filter
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Fig. 4 Measured spectrum of comb filter
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Conclusion: Our comb filter can also be implemented by using

waveguides with 1�M splitter and M� 1 combiner, and a

constant path length difference between the waveguide channels

[6] instead of uniform FBGs. Each channel ought to include a

phase shifter and an attenuator. The system can be made

programmable allowing variations of the individual spectral peaks

and their spacing. Another advantage is that the low reflectivity

requirement for the FBG is relaxed and there is no limitation on

the transmittance of each channel. In addition, the overall comb

bandwidth can be significantly broadened compared to the limited

value (shown in Figs. 2–4) for the FBGs system, determined by

the grating length.
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