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Abstract

We propose and numerically demonstrate a simple method for measuring waveforms of optical pulses that have spectral bandwidths
much larger than the passband of the measuring system, thus enabling a kind of temporal superresolution. The technique is based on
pulse intensity modulation that contains high-order harmonics. Parts of the pulse intensity spectrum that are shifted as a result of
the modulation, are moved over (‘‘umklapped’’) to the center of the passband, transmitted and then recorded by an oscilloscope. The
pulse intensity spectrum is restored by parts from the Fourier transform of a few oscillograms, measured after performing the temporal
shifts between the pulse train and the modulation. A similar approach is applied for achieving subwavelength spatial resolution in far –
field microscopy. The spatial modulation is performed by a diffraction grating. The method allows one to restore a subwavelength object
in a single measurement.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Monitoring of optical pulse waveforms with picosecond
temporal resolution is important for next generation of
optical communication systems operating at a data rate of
40 Gb/s, as well as for other applications, such as time-
resolved spectroscopy, material processing, etc. A simple
and widely used direct measurement of pulse waveforms is
done with fast photodiodes and sampling oscilloscopes.
However, their available bandwidth is presently below 50–
70 GHz. One of the possible ways to overcome this barrier
is temporal imaging in which the pulse is temporally magni-
fied [1,2], similarly to spatial magnification by microscopes,
or alternatively converted to the spectral domain while
keeping the shape (spectro-temporal imaging) [3–5]. Such
methods are based on the time–space analogy, where time
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lenses (phase modulators) and dispersion are analogs of reg-
ular spatial lenses and free space diffraction. Time lenses can
be practically implemented using an electrooptic phase
modulator [2,3,5], or by mixing the objective pulse with a
chirped pulse in a non-linear crystal by sum-frequency gen-
eration [1], or by cross-phase modulation in a non-linear
fiber [4]. Temporal imaging imposes certain conditions on
the phase modulation and the dispersive elements: The tem-
poral dependence of the modulation phase and the spectral
phase response of the dispersive elements have to be close to
quadratic in order to avoid temporal aberrations of the
pulses, and the dispersion magnitudes and modulation
amplitude ought to be matched. Additionally, non-linear
temporal imaging requires relatively high light intensities.

In this paper we present a simple method for optical
pulse measurements by photodiodes and oscilloscopes with
passbands that are much narrower than the pulse band-
width. The technique is based on periodic pulse modula-
tion, which provides high-order harmonics. There are no
other basic requirements, such as dispersive elements that
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are needed in temporal imaging, where the pulse to be mea-
sured is stretched and its intensity spectrum, the Fourier
transform of the pulse intensity, is accordingly compressed
in order to be transmitted through the passband of a diode
and an oscilloscope. In our technique, the pulse spectrum is
divided into a certain number of parts. Each part is spec-
trally shifted owing to the modulation, moved into the
passband (‘‘umklapped’’), transmitted and restored after
processing of the oscilloscope traces. Thus, the whole pulse
intensity spectrum and then the pulse waveform are
restored. The method that is entirely linear and therefore
can by used for low pulse intensities, is demonstrated by
numerical simulations for single shots and periodic pulses.
We also show that the same approach can be applied for
the spatial case, obtaining a subwavelength resolution in
conventional far-field microscopy. The temporal modula-
tion is replaced in this case by spatial modulation with a
periodic diffraction grating.

In this way we demonstrate, for the first time to the best
of our knowledge, a close analogy between spatial and tem-
poral superresolution, and methods for achieving it.
2. Measurement principle

The basis of our method is periodic intensity modulation
of the pulse to be measured. A periodic modulation func-
tion fm(t) can be expanded into a Fourier series

fmðtÞ ¼
XN

n¼�N

cn expðinxmtÞ; ð1Þ

where cn are the Fourier coefficients, xm = 2p/Tm, Tm is the
modulation period, and the number of non-zero modula-
tion harmonics is 2N + 1. The pulse intensity at the modu-
lator output has the form

IoutðtÞ ¼ I inðtÞ
XN

n¼�N

cn expðinxmtÞ; ð2Þ

where Iin(t) is the input pulse intensity. Assuming that
the measured photodiode signal is proportional to the
optical pulse intensity, we can introduce the optoelec-
tronic transfer function (OETF) H(x) as a ratio of the
spectrum of the output oscilloscope signal and the spec-
trum of the input pulse intensity [6]. H(x) describes the
spectral characteristics of the photodiode and the oscillo-
scope together. If we take into account negative frequen-
cies, the function H(x) ought to be continued in this
region with the condition H(�x) = H*(x), where * de-
notes complex conjugation. The Fourier transform of
(2) gives the spectrum of the oscilloscope output signal
(in arbitrary units):

V ðxÞ ¼ HðxÞ
XN

n¼�N

cnF inðx� nxmÞ; ð3Þ

where Fin(x) is the intensity spectrum of the input optical
pulse.
We assume that the pulse spectrum bandwidth is much
larger than the bandwidth of the OETF. In the absence
of modulation, the series in (3) has a single term with
n = 0. The input pulse spectrum has a cutoff imposed by
the transfer function and then the information imbedded
in the high-frequency spectral components is lost. The
pulse on the oscilloscope screen will be much wider than
the original input pulse. As can be seen from (3), owing
to periodic modulation, we obtain a sum of shifted spectra
of the pulse intensity. We assume that for the Nth shifted
spectrum (and similarly for �N) the intensity that is com-
parable to the noise level lies within the spectral region with
non-zero transfer function. It implies that now the whole
information about the pulse intensity spectrum is included
in its 2N + 1 parts that can be transmitted by a photodiode
and an oscilloscope with a certain weight. In this case, the
pulse on the oscilloscope screen will also be much wider
than the input pulse, but its Fourier transform contains
information about the whole pulse intensity spectrum and
it can be extracted. It is desirable to choose the modulation
frequency xm/(2p) to be close to the full width of the com-
plex OETF. We denote the anticipated full width of the
input pulse spectrum by W. Then the number of the needed
harmonics can be estimated as

2N þ 1 ¼ 2pW
xm

:

One of the ways for extracting the information is to
record 2N + 1 oscillograms for the different temporal shifts
between the input optical pulse train and the intensity mod-
ulation. (For another way with a single recording, see
below at the spatial analog.) Spatial shifts for similar pur-
poses were used in fluorescence microscopy with structured
illumination [7–9]. Eq. (3) can be rewritten as

V kðxÞ ¼ HðxÞ
XN

n¼�N

cn expðinxmskÞF inðx� nxmÞ; ð4Þ

where sk is the kth temporal shift, k = 1, . . ., 2N + 1.
Eq. (4) gives a set of linear equations for 2N + 1 un-
known functions Fin(x � nxm). Vk(x) can be found from
the Fourier transform of the kth experimental oscillo-
gram. The Fourier coefficients, cn, of the modulation
function have to be measured as well. Each obtained spec-
trum Fin(x � nxn) is shifted back to the original place in
the spectrum. Once the whole spectrum of the input pulse
is reconstructed, the pulse intensity is calculated using a
Fourier transform.
3. Recording short optical pulses

In our simulations for the pulse waveform measurement,
we studied two different cases: (a) The first one is for pulse
repetition rates that are much smaller than the modulation
frequency. Then, the pulse intensity spectrum can be con-
sidered as continuous compared with the discrete modula-
tion spectrum and the data processing can be performed as
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Fig. 2. Original (solid curve) and restored (dotted curve) spectra of the
pulses shown in Fig. 1. The OETF (dashed curve) of a photodetector and
an oscilloscope with a 50 GHz width for positive frequencies.
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for a single pulse. It is clear that in reality high speed sam-
pling oscilloscopes can measure only periodic pulses. (b) In
the second case, the pulse repetition rate and the modula-
tion frequency are equal. We show below that this condi-
tion substantially simplifies the measurement and the
processing. There is even no necessity to use an oscilloscope
in this case; only an intensity modulator and a power meter
are required for the periodic pulse waveform measurement.

3.1. Single pulse

We assume that the intensity modulation is performed
by a Mach–Zehnder modulator and the modulation func-
tion can be written as

fmðtÞ ¼ j1þ expfiu0 þ iA sin½xmðt � skÞ�gj2; ð5Þ
where A is the modulation index and u0 is the constant phase.
We expand (5) into a Fourier series with the coefficients

c0 ¼ 2þ 2J 0ðAÞ cosðu0Þ;
cn ¼ ½expðiu0Þ þ ð�1Þn expð�iu0Þ�J nðAÞ; n 6¼ 0;

ð6Þ

where Jn(A) is the n-order Bessel function of the first kind.
We chose here u0 ¼ 0. Then, it can be seen from (6) that
the modulation has only even harmonics.

The optical pulse was assumed to be Gaussian with a
full width at half maximum (FWHM) of 2.5 ps. The origi-
nal pulse is shown in Fig. 1 (solid curve). The intensity
spectrum of this pulse is shown in Fig. 2 (solid curve).
The spectrum width (FWHM) is 353 GHz. We show also
in this figure the Gaussian optoelectronic transfer function
H(x) of the oscilloscope–photodiode system that is used in
the simulations (dashed curve). Its half-width (the width of
the real transfer function) is 50 GHz. Since the pulse band-
width is much larger than the passband of the system, the
pulse recorded by an oscilloscope without any processing
would be broadened in comparison with the original pulse,
as shown in Fig. 1 (dashed curve). We used the following
parameters of the pulse modulation: fm = 40 GHz, A =
2p. Note that the even modulation harmonics give in this
case a frequency shift Df = 2fm = 80 GHz. The number N
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Fig. 1. Intensity profiles of the original pulse (solid curve) with FWHM of
2.5 ps and the restored pulse (dotted curve). The oscillogram of this pulse
(dashed curve) that would be recorded by a photodetector and an
oscilloscope with 50 GHz width of an OETF.
that corresponds to that modulation and the pulse spec-
trum was taken to be 5.

In simulating the experiment, we obtained 2N + 1 = 11
oscillograms, shifting each time the modulating signal by
Ds = 0.4 ps (sk = kDs). The Fourier transform Vk(x) of
the kth oscillogram was substituted to Eq. (4). The solution
for each sampling point xi gives 2N + 1 = 11 values of the
shifted spectrum parts Fin(xi � nxm) (n = �5, . . .0, . . .5),
shown in Fig. 3. The original pulse intensity spectrum is
reconstructed by shifting each spectrum part Fin(xi � nxm)
to its original place in the spectrum. The restored spectrum
is shown in Fig. 2 (dotted curve). One can see the excellent
agreement between the original and restored spectra. The
curves almost coincide. The Fourier transform of the
restored spectrum gives the restored pulse shown in
Fig. 1 (dotted curve). We also see here again the excellent
reconstruction of the original waveform.

3.2. Periodic pulses

A periodic pulse train was obtained by simulating sinu-
soidal phase modulation of cw light with a frequency of
40 GHz and a modulation index of 3.8 rad. The modulated
light was then propagated through a fiber with dispersion
of 2.8 ps/nm. The calculated pulses at the fiber output
are shown in Fig. 4 (solid curve). The pulse width (FWHM)
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Fig. 3. Restored shifted parts Fin(x � nxm) of the pulse spectrum within
the frequency interval (�40 GHz, 40 GHz).
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Fig. 4. Original periodic pulses (solid curve) with a repetition rate of
40 GHz and FWHM of 2.66 ps and restored pulses (dotted curve). The
oscillogram of these pulses (dashed curve) that would be recorded by a
photodetector and an oscilloscope with a 50 GHz width of the OETF (in
the absence of the second modulation).
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is 2.66 ps. The discrete spectrum (Fourier coefficients) of
the pulse intensity is presented in Fig. 5 (squares). The
modulation parameters were the same as those taken for
the single pulse calculation, except that u0 = 3.9 rad. The
frequency shift was Df = fm = 40 GHz and N = 10. Fig. 6
shows the spectrum of the modulation harmonics.

The periodic pulse intensity can be expressed as a Fou-
rier series
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Fig. 5. Discrete intensity spectrum (Fourier coefficients) of the original
(squares) and restored (crosses) periodic pulses shown in Fig. 4.
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Fig. 6. Spectrum (Fourier coefficients) of the periodic intensity modula-
tion with a frequency of 40 GHz.
I inðtÞ ¼
XN

n¼�N

bn expðinxmtÞ; ð7Þ

where bn are the Fourier coefficients and 2N + 1 is the
number of non-zero harmonics. Using (1) and (7), we can
obtain for the intensity of the modulated pulses:

ImodðtÞ ¼ I inðtÞfmðtÞ

¼
X2N

n¼�2N

XN

l¼�N

clbn�l expð�ilxmsÞ expðinxmtÞ; ð8Þ

where s is the time delay between the original pulse and the
modulation function. The intensity shape of the recorded
pulses depends on the OETF of a measurement system.

We first assume the simplest case when the width of the
OETF is close to 0, much less than the modulation fre-
quency. It can be implemented, for instance, by measuring
the modulated pulse intensity with a dc power meter, instead
of an oscilloscope. In this case, only the term n = 0 remains
in the sum in (8) for the recorded pulses. Thus, we obtain
from (8), the power Pk measured (in arbitrary units) after
the kth temporal shift (k = �N, . . .0, . . .,N)

P k ¼
XN

l¼�N

clb�l expð�ilxmskÞ: ð9Þ

Expression (9) can be treated as a set of 2N + 1 equations
for 2N + 1 unknown Fourier coefficients bl. Solving this
system and using Eq. (7), we obtain the original pulse
waveform.

We made simulations for the periodic pulses shown in
Fig. 4. Fig. 7 shows 2N + 1 = 21 values of the calculated
averaged power Pk for temporal shifts sk = kDs, Ds =
1.2 ps. The restored Fourier coefficients bl are presented
in Fig. 5 (crosses); they fully coincide with the values of
the original pulses. The restored pulse intensity is shown
in Fig. 4 (dotted curve) along with the original pulses, for
comparison. One can see excellent agreement. We empha-
size again that our method becomes very simple for peri-
odic pulse waveform measurements, when the modulation
frequency is equal to the pulse repetition rate. It requires
only 2N + 1 shifts between the modulation and the pulse
-10 -5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
 (

ar
b.

 u
ni

ts
)

Temporal shift (ps)

Fig. 7. Values of the average power of the modulated periodic pulses for
the different temporal shifts between the pulse train and the modulation.
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train and 2N + 1 measurements of the average powers by a
simple power meter. These measurements and the process-
ing can be carried out in real time and displayed on a com-
puter screen. We should also note that an implementation
needs high-quality synchronization between the measured
pulses and the modulation: it can be done by using an
amplified portion of the detected pulses.

The measurements can also be done with a photodiode
and an oscilloscope. For a real OETF width of 50 GHz,
the calculated oscillogram of the original pulses (in the
absence of the second modulation) is shown in Fig. 4
(dashed curve).For the modulated pulses, only five inten-
sity harmonics from (8) with n = 0,±1, ±2 would be
recorded on the oscilloscope screen. In the data processing,
the Fourier coefficients of 2N + 1 oscillograms of the mod-
ulated pulses have to be calculated. According to Eq. (8),
the zeroth-order Fourier coefficients (n = 0) give the same
set of equations as presented in (9). The only difference is
that the average power of the modulated pulses is now
measured (in arbitrary units) not by a power meter, but
by a photodiode and an oscilloscope. Analogous equations
can be formulated, according to Eq. (8), calculating the
first-order (n = ±1) or the second-order (n = ±2) Fourier
coefficients of 2N + 1 oscillograms. If we write the equa-
tions for two or more orders together, the number of the
temporal shifts can be accordingly decreased.

Our technique allows one to measure optical pulse wave-
forms even in the cases when their bandwidth is much lar-
ger than the width of the OETF, or in other words when
the temporal resolution of a photodetector and an oscillo-
scope is insufficient. It can be said that our method effec-
tively enhances their resolution. The enhancement
depends on the modulation frequency and the modulation
index. We took in the simulations parameters that repre-
sent the best commercial modulators. The bandwidth of
the measuring devices (oscilloscope and photodetector) is
effectively increased from 50 to 250 GHz that corresponds
to measuring 2.5 ps width pulses. For the subpicosecond
range, the modulators performance ought to be enhanced.
For instance, modulation frequency of 75 GHz and modu-
lation index of 7.5p can provide measurement of 500 fs
width pulses.

The resolution of temporal imaging with a time lens (by
an electrooptic modulator) is estimated in [10] as dt � 1/
DFm, where DFm is the bandwidth of the modulation spec-
trum. The shortest pulse that can be measured by our
method has the same spectral width as the modulation.
For our case, 1/DFm is the temporal duration of the pulse,
meaning that our method provides at least the resolution of
temporal imaging with a time lens. Then we have the
advantage of the superresolution method that it does not
need any dispersive element and does not impose any con-
dition on the modulation function beside the existence of
high-order harmonics.

Our method does not give complete characterization of
optical pulses since it measures only the pulse intensity, and
not the phase profile that is of interest, for example when
studying non-transform-limited pulses. However, from
the measured intensity of a temporal interference pattern
one can extract information about the pulse phase profile
by standard processing methods. It should be pointed out
that the temporal resolution of an oscilloscope is deter-
mined not only by its transfer function, but also by the res-
olution of its time base, that has to be matched as well. The
time base, for instance, of a 50 GHz oscilloscope has a res-
olution of up to 64 fs, but its accuracy is worse.

4. Spatial imaging with subwavelength resolution

The method described here can also be applied to sub-
wavelength resolution in the spatial imaging case. The spa-
tial spectrum of any object that can be transmitted by an
optical imaging system is limited, as in the time domain,
by its transfer function. The maximal transmitted spatial
frequency determines the spatial resolution of a system.
Two different objects having the same spatial spectrum
within the passband of an optical system give indistinguish-
able identical images. The image ambiguity [11] holds when
there is no a priori information about the objects. How-
ever, knowledge, for instance that the object has finite size,
makes it possible to find the extension of the spatial spec-
trum beyond the system passband and reconstruct the
object unambiguously [11]. Thus the classical resolution
limit can be exceeded, thus giving spatial superresolution.
The achievable resolution in this case is limited by noise
[12]. A more general principle was established in [13]: the
number of degrees of freedom of an optical message trans-
mitted by an optical system is invariant. It allows, for
instance, extending the bandwidth of transferred spatial
frequencies above the classical value by reducing the band-
width of transferred temporal frequencies [13]. Such an
experimental demonstration was given in [14] where two
gratings, inserted into the object and the image planes,
moved synchronously in opposite directions and the image
was temporally integrated by a photodetector. This method
was further improved [15] by using Dammann gratings
instead of Ronchi gratings that were used in [14].

The spatial spectrum of propagating light waves is lim-
ited in the range (�1/k, 1/k), where k is the wavelength.
Therefore, the maximal resolution achievable in conven-
tional far-field microscopy is about of k/2. This limitation
can also be viewed by the Heisenberg uncertainty principle
[16]. The information about subwavelength details of an
object is carried by evanescent waves that do not propagate
from the object, but decay over distances comparable with
the wavelength.

However, evanescent waves can be transformed to prop-
agating waves, for instance by coupling to a tip in optical
tunneling microscopy and in such a manner subwavelength
details can be resolved. In far-field imaging such transfor-
mation can be performed by a diffraction grating [17],
where the diffracted evanescent waves have a shifted spatial
spectrum. If this spectrum lies within the optical transfer
function (OTF) of an imaging system, the waves propagate



-0.2 -0.1 0.0 0.1 0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

iv
ity

Distance (μm)

Fig. 8. Original (solid curve) and restored (dotted curve) reflection profile
of the object.
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Fig. 9. Transmission profile of the periodic diffraction grating with a
period of 230 nm.
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and can be recorded. In [17], an image of an object-grating
with period of 380 nm was obtained in this way. The oppo-
site transformation, from propagating to evanescent waves,
is also possible by a diffraction grating, when the grating
period is smaller than k/2. Two diffraction gratings with
equal [18] or close [19] subwavelength periods, rotated rel-
ative to each other, can be used for imaging one of them. In
this case, the first grating serves as the object and produces
the evanescent waves diffracted by the second grating, giv-
ing propagating waves with a spatial spectrum lying within
the OTF of the optical system. For the decoding of the spa-
tial information, an additional diffraction grating was used
[19,20]. Recently, a novel near-field imaging system was
proposed [21] in which a diffractive element may be trans-
lated relative to the object, where the distance between
them ought to be kept as k/100. It was though pointed
out [19] that it is difficult to perform such a movement
experimentally.

In our method we use only one grating without any
moving, and thus making it proposed technique simpler
and more convenient for implementation. The spatial
information of the object is extracted from the Fourier
transform of its spatial imaging. Our method allows
obtaining reflectance or transmittance of a single or peri-
odic object as a function of coordinate. Similarly to the
temporal domain case, the object has to be spatially mod-
ulated. It can be done by a diffraction grating with known
non-sinusoidal transmission or reflection profile, closely
attached to the object. In our simulations, the object was
taken to be a reflecting plane and the grating is transmit-
ting. The light, passed trough the diffraction grating is
reflected from the object with a certain reflection profile,
then passing back trough the grating. Then the output
plane of the diffraction grating is observed by a far-field
microscope.

For simplicity, we restrict our consideration to one-
dimensional object and incoherent illumination. Ideally,
the spatial modulation has to be performed exactly in the
plane of the object, and therefore the grating thickness
ought to be infinitely small. The light intensity in the out-
put plane of the diffraction grating can be written as

IoutðxÞ ¼ RobðxÞT grðxÞ; ð10Þ

where x is the transverse coordinate, Rob(x) is the intensity
reflection profile of the object, and Tgr(x) is the grating’s
two-pass intensity transmittance. Rob(x) and Tgr(x), taken
in our simulations, are shown in Figs. 8 and 9, respectively.
The grating period was chosen to be 230 nm. The periodic
grating transmittance can be written as a Fourier series

T ðxÞ ¼
XN

n¼�N

cn expð2pinx=KÞ; ð11Þ

where cn are the Fourier coefficients and K is the grating
period. The object reflection Rob(x) can also be represented
as a Fourier integral or a Fourier series for a non-periodic
and periodic object, respectively. Physically, it implies that
we consider the object and the grating as two sets of infinite
(or finite) number of closely attached sinusoidal gratings
and the mechanism of the evanescent wave transformation
is the same as in [18,19].

By substituting (11) to (10), taking into account the
OTF of the imaging system, and performing a Fourier
transform, we obtain an equation similar to Eq. (3) for
the temporal domain

F imðkxÞ ¼ HðkxÞ
XN

m¼�N

cmF obðkx � m=KÞ; ð12Þ

where kx is the spatial frequency, H(kx) is the OTF of the
system, Fob(kx) and Fim(kx) are the Fourier transforms of
the object reflectivity and the image of the modulated ob-
ject, respectively. For simplicity, we assumed a system mag-
nification MS = 1. Eq. (12) has the same meaning as Eq.
(3). As a result of modulation, the spatial spectrum of the
object is shifted. If all of the shifted parts of the spectrum
are within the system passband, the object spectrum can
be restored by parts, according to the procedure, described
above for the time domain. It can be seen from Fig. 10 that
a significant part of the simulated object spatial spectrum is
placed beyond the system passband. Therefore, without
modulation and processing, we cannot see in the conven-
tional far-field image in Fig. 11 two peaks spaced 60 nm
apart that exist in the object, seen in Fig. 8.
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Fig. 10. Original (solid curve) and restored (dotted curve) intensity
spectra of the object (Fourier transform of the object reflectivity). The
OTF (dashed curve) of the imaging system.
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Fig. 11. Image of the object, shown in Fig. 8, by conventional (without
modulation) far-field imaging system with the OTF, presented in Fig. 10.
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We can use the same technique of the shifts between the
object and modulation applied for the retrieval procedure
in the time domain. In reality, the shifts of the grating rel-
ative to the object are difficult to implement. In simula-
tions, we used the processing that does not require this
shifting. If the object intensity spectrum is bounded, we
can continue it periodically and expand into a Fourier
series

F obðkxÞ ¼
X

n

dn expð2pinkx=KÞ; ð13Þ

where K and dn are the period and the Fourier coefficients
of the extended object spectrum, respectively. Eq. (12) can
be rewritten in this case to give

F imðkxÞ ¼ HðkxÞ
X

n

dn

XN

m¼�N

cm exp½�2pinm=ðKKÞ�

� expð2pinkx=KÞ: ð14Þ

Solving the set of Eqs. (14) for the discrete values
kx = sDkx (s is the order number of sampling points, Dkx

is the sampling interval) we find dn and then restore the
Fourier transform of the object and the object itself. It is
important to note that the period K ought to be sufficiently
large so that there will not be overlaps of the shifted parts
of the spectra related to adjacent periods. Our assumption
regarding to the spectrum periodicity is equivalent to rep-
resentation of the object as a sum of delta functions with
a weight dn for the nth delta. The interval between adjacent
deltas is 1/K. If the estimated full width of the object is Dx,
we can estimate the number of the intervals between the
deltas (sampling intervals in the space) as K ÆDx. The num-
ber of the unknowns dn will be K ÆDx + 1. To obtain the
same number of Eqs. (14) we divide the whole passband
into K ÆDx intervals. Thus, the sampling interval in the fre-
quency space is Dkx = D/(K ÆDx), where D is the passband
width.

We took for the simulations: Dx � 0.3 lm, K =
120 lm�1. The passband width D of the system can be esti-
mated as D � 2/k. It is clear that the value of D should be
as high as possible. We chose D = 5 lm�1 that corresponds
to k = 0.4 lm. Thus we can obtain the number of
unknowns K ÆDx + 1 = 37 and the sampling interval
Dkx = 0.139 lm�1. Finding the Fourier coefficients dn, we
restore the object spectrum according to Eq. (13). It can
be seen from Fig. 10 that the original and restored spectra
differ only at the wings. However, even that discrepancy
can be eliminated by increasing the period K. The spatial
distribution of the object is calculated from the inverse
Fourier transform of the object spectrum. The restored
object reflectivity is shown in Fig. 8 (dotted curve) along
with the original object reflectivity (solid curve). We can
see an excellent agreement.

Solution (13), (14) is exact for a strictly bounded spec-
trum. However, even in this case the reconstruction of
the spectrum according to Eqs. (13) and (14) requires for
the calculations high accuracy. This implies that small level
of noise can affect the restored spectrum and drastically
distort the image. We thus propose a solution which can
provide more stability against noise.

First, we remind that in our method we divide the whole
spectrum of the object into parts (bands), each having a
width of 1/K. The measurements can be made only within
the central band and the spectrum should be restored in all
of the bands. In each ith band, we represent the object spec-
trum as a polynomial

fiðkxÞ ¼
XM

m¼1

bimkm
x ; ð15Þ

where M is the number of sampling points in each band,
i = 0, ±1, ±2, . . . ,±N, and 2N + 1 is the number of the
bands. The total number of the sampling points is
(2N + 1)M. Then we replace the spectrum Fob(kx) in
Eq. (12) by the functions fi(kx) from (15)

F imðnDkxÞ ¼ HðnDkxÞ
XN

m¼�N

cmfmðnDkx � m=KÞ; ð16Þ

where nDkx is the sampled value of kx (n is an integer).
Note that the sampled values of the image spectrum Fim(kx)
can be experimentally obtained only within the central
passband having M sampling points. This means that
according to (16) we can write M equations. We obtain
the next set of (2N + 1)M equations from the condition
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Fig. 12. Original (solid curve) and restored (dashed curve) intensity
spectra of the object in the presence of the noise with a level of 0.01 (1%
from the maximal value of the object reflectivity).
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Fig. 13. Original (solid curve) and restored (dashed curve) reflection
profile of the object in the presence of noise obtained from the restored
spectrum shown in Fig. 12.
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of equality of each function fi(kx) in the sampling points of
the ith band to the object spectrum expressed by (13). We
also use the condition that the spectrum (13) is equal to 0
for the points between the spectrum periods such that the
number of equations is equal to the number of unknowns,
dn and bim.

First, we performed simulations in the absence of noise
for the same object and the OTF shown in Figs. 8 and 10,
respectively. We took the following parameters:
K = 76 lm�1, M = 11, N = 5, and the number of the Fou-
rier coefficients dn in (13) was 23. The restored spectrum
and object completely coincide with the original ones in
the plots. Therefore, we do not show them in the figures.
It can be seen from Table 1 that the mean square deviation
between the original and the restored objects is 0.3% in the
absence of noise.

Now we include additive noise. We introduce additional
(2N + 1)M unknowns Uik, which are the sampled values of
the image spectrum. i and k denote the order number of the
band and of the sampling point in the band, respectively.
Uik deviates from the true values of the image spectrum
at certain sampling points owing to noise. We require that
the curves fi(kx) fit the noisy points Uik in each ith band
according to the least mean square method. It gives addi-
tional (2N + 1)M equations. The relation between the
bands given by (16) ought to be rewritten now for the ran-
dom values Uik.

F imðnDkxÞ ¼ HðnDkxÞ
XN

m¼�N

cmUmn: ð17Þ

Fim(nDkx) in (17) is the sampled values of the noisy spec-
trum within the central band obtained from the noisy ob-
ject by a Fourier transform. By solving all of the
equations simultaneously we obtain the values of Uik, dn,
and bim.

In the simulations, we modeled the noise by generation
of normally distributed random numbers with a zero mean
value and a given standard deviation. The noise was added
to the object (the same object as in Fig. 8) and then the
noisy image spectrum was calculated. We took the same
parameters that were used in the noiseless case. We calcu-
lated the root-mean-square (rms) deviation between the
original and restored objects as a function of the noise level
(standard deviation). The maximal value of the object
reflectivity taken in the simulations was unity. Results of
the calculation are shown in Table 1. It can be seen that
up to a noise level of 10�2 (1% from the maximal value
of the object reflectivity) the rms deviation does not depend
practically on the noise. For a noise level of 3 · 10�2 the
deviation increases up to 13.9% and then for a noise level
Table 1
Dependence on the noise level of the root-mean-square deviation of the resto

Noise level 0 10�8 10�7 10�6 10

rms deviation (%) 0.32 4.8 4.8 4.8 4.
larger than 5 · 10�2 the restored object is absolutely differ-
ent from the original one. In Figs. 12 and 13 we show the
restored spectrum and object, respectively, in comparison
with the original ones for a noise level of 10�2. We see that
the solution is much more stable against noise fluctuations.

The advantage of our method in that only a single mea-
surement of the object image ought to be performed for the
retrieval process instead of the multiple shifts and measure-
ments in the temporal domain. This possibility is important
because shifting a diffractive element in the spatial domain
is difficult to implement. For the temporal domain one can
choose one of these two methods. The first one with multi-
ple measurements is more complex, but more resistant
against noise compared to the second method. The second
one with a single measurement is simpler to implement but
requires more complicated processing.
red object from the original one

�5 10�4 10�3 10�2 3 · 10�2 5 · 10�2

9 4.6 5.1 3.4 13.9 >100
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It should be taken into account that in reality the thick-
ness of the grating cannot be infinitely small. Then, our
approximation is valid if for the highest harmonic order
of the grating profile used in the processing, the distance
of the evanescent waves decay is much larger than the grat-
ing thickness. This condition determines the maximal reso-
lution achievable by the method. Other aspects are the way
real diffraction grating follows Eq. (10), and the accuracy
of the grating profile (transmission or reflection) measure-
ment that also affects the subwavelength resolution. The
calibration has to be done with a near-field microscope.
For our simulation, the spatial resolution of such calibra-
tion ought to be about 10 nm.
5. Conclusion

We have presented a method that allows the retrieval of
optical pulse waveforms even when the intensity spectrum
is much wider than the passband of the measuring system.
The pulse shape can be restored by using temporal intensity
modulation. We are able by this technique to increase effec-
tively the passband of the measuring oscilloscopes and
photodetectors beyond usually available bandwidths that
are about 50–70 GHz. The simple processing allows one
to obtain the measured pulse waveform in real time.
Another advantage compared to temporal or spectro-tem-
poral imaging techniques is that we do not need here any
dispersive elements that substantially complicate the wave-
form measurement. No conditions are imposed on the tem-
poral modulation except the need of high harmonics. The
method becomes very simple for periodic pulses with high
duty cycle where even the need of an oscilloscope is
relaxed. Only a few measurements by a power meter after
the appropriate pulse train shifts are needed for the pulse
waveform recovery.

We also showed that the method can also be applied for
the spatial case, achieving subwavelength spatial resolution
in far-field microscopy. The spatial modulation is per-
formed, for instance, by a diffraction grating. The grating
also transforms evanescent waves that carry subwavelength
information to propagating waves. The method allows
reconstructing subwavelength objects only from one mea-
surement, without shifting them relative to the grating.
Our technique does not need a second grating for decoding
the spatial information about an object. This information is
extracted from the Fourier transform of the object image.
The object reconstruction ambiguity is resolved since the
processing is based on the image spectrum beyond the sys-
tem passband. The spectrum extension is provided by the
spatial modulation of the grating.
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