
Non-Gibbsian Stochastic Light-Mode Dynamics of Passive Mode Locking

Michael Katz, Ariel Gordon, Omri Gat, and Baruch Fischer
Department of Electrical Engineering, Technion, Haifa 32000, Israel

(Received 10 May 2006; published 14 September 2006)

We study a stochastic light-mode system with non-Gibbsian steady state statistics, unravelling global
nonequilibrium phase transition properties. It relates to the onset of passive mode-locking in the general
case of lasers with arbitrary dispersion and Kerr nonlinearity that includes the nonsolitonic regime. The
solution is facilitated by a special stationarity criterion imposed by the system gain balance. We show that
the mode-locking phase transition is generic, and give exact expressions for the pulse power and its
stability map. We find that at the boundary of the mode-locking stability the pulse power is exactly one
half of the total intracavity power, and that the parameter region for the most resistant pulses against noise
destabilization is not at the soliton condition.

DOI: 10.1103/PhysRevLett.97.113902 PACS numbers: 42.55.Ah, 05.70.Fh, 42.65.�k

The physics of nonequilibrium systems is an intensive
research topic that touches many different areas with vari-
ous meanings and examples [1]. In this Letter we analyze
and solve a non-Gibbsian nonequilibrium light-mode sys-
tem, realized in passive mode-locked lasers [2]. It is a
special many-body system that for certain parameters
was shown to be governed by equilibrium statistical me-
chanics, resulting in very rich thermodynamiclike behavior
[3–5]. For the broader case, however, the steady state
statistics can be non-Gibbsian, and therefore cannot be
directly analyzed by standard equilibrium statistical me-
chanics methods. Here we solve the general nonequilib-
rium light-mode system by applying a special statistical
stationarity criterion about common sharing of energy
resources (gain) between the noisy and ordered waveforms
in the system. The statistical steady state of far from
equilibrium systems is characterized by steady probability
currents and entropy production, and there is no widely
applicable analysis method. Therefore the new method
presented here for analyzing a class of nonequilibrium
systems can be of importance. Moreover, the results pro-
vide a global basis for laser mode locking as a nonequilib-
rium phase transition and thus are significant to the fields
of ultrashort optics and laser physics.

Passively mode-locked laser systems are centrally lo-
cated in the research and technology of ultrashort optical
pulses. They are the enabling means for providing light
pulses that nowadays reach the few femtosecond regime,
close to the limit of one lightwave cycle [6]. Transition to
pulse mode-locked operation is abrupt and requires a
threshold power, below which the laser operates as con-
tinuous wave (cw). This cw to pulse transition has been the
subject of many studies [7–9], but only recently has it been
satisfactorily resolved. The new theory is based on the
observation that a multimode laser is a many-body dynami-
cal system of interacting light modes, subject to external
noise. The study of multimode lasers in this point of view
has led to the development of the statistical light-mode
dynamics (SLD) [3,10], in which the physics of the laser as

a many-body system acquires a thermodynamic meaning.
The SLD systems were shown to be solvable using an exact
mean-fieldlike theory. The onset of mode locking is then
naturally interpreted as a first order phase transition, and all
the known phenomenology of passive mode locking is
recovered.

The aforementioned SLD systems share a common sim-
plifying property, known in stochastic analysis as the po-
tential condition (detailed balance), in the steady state [11].
Then the Fokker-Planck equations are straightforwardly
integrated to yield a Gibbs measure. In the context of
passive mode locking, the potential condition is not met
(there is a nonzero probability current) when the dispersive
terms in the master equation, resulting from the chromatic
dispersion and the Kerr nonlinearity, are included and they
do not obey the soliton condition [3]. This condition is a
constraint which relates the dispersive coefficients with the
gain terms of the equation in a manner specified below.
However, in applications of ultafast optics the dispersive
effects are usually strong [2], thus have to be included
[2,12,13], and in many cases it is not possible or convenient
to achieve the soliton condition.

In this Letter we address the SLD of passive mode
locking with unrestricted Kerr nonlinearity and chromatic
dispersion. As said above, in the nonsolitonic case the
steady state measure is not known and equilibrium meth-
ods are no longer applicable. Nevertheless, we have found
a way to circumvent the problem by exploring the statistics
of the order parameter directly. It was facilitated by devel-
oping a stationarity criterion to determine the pulse power
through gain balance. Assuming that the steady state
waveform decomposes into pulse and noise continuum
parts, we show that the fact that both parts experience the
same gain fully determines the mode-locking threshold and
the pulse power. A practical outcome of our theory is a
global closed form expression for the stability threshold of
passive mode locking. Intriguingly, we find that the opti-
mal parameter regime for mode locking is not solitonic.
Another interesting result is that the pulse power at the
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threshold is always exactly one half of the total intracavity
power, regardless of the values of other system parameters.

We model the temporal evolution of the laser waveform
by the Haus master equation [2,14]. When dispersive ef-
fects are taken into account, the master equation is a
complex Ginzburg-Landau equation for  , the slowly
varying amplitude of the electric field,

 

@ 
@t
� A

@2 

@z2 � Bj j
2 � g � ��z; t�; (1)

in a cavity of length L. The real and imaginary parts of the
complex coefficient A � �g � i�d model the real and
imaginary parts of the gain parabolic spectral filtering
and the chromatic dispersion, respectively, while B �
�s � i�k accounts, in its real and imaginary parts, for the
fast saturable absorber and the Kerr nonlinearity, respec-
tively. We also define and later use the dimensionless
parameters � � �k=�s and � � �d=�g. g is the overall
net gain in the cavity, assumed to be slow relative to the
time scale of variations of  . The slow saturable gain is
modeled by letting g be a function of the total intracavity
power 1

L

R
j j2dz; it acts as a restoring force that stabilizes

the intracavity power around some value P determined by
the amplifier. It follows from the analysis below that once
the value of P is given, the precise functional form of g is
unimportant [3,10]. The noise in the cavity, �, is white
Gaussian with autocorrelation h���z0; t0���z; t�i �
2LT��z� z0���t0 � t�, where T is the noise power injec-
tion rate.

When A=B is real (i.e., � � �) the master equation is
said to satisfy the soliton condition, under which its noise-
less version has solitonlike pulse solutions. Then [3] the
master equation satisfies the potential condition [11], im-
plying that the steady state waveform probability distribu-
tion is Gibbs-like. Analysis in this case can therefore be
done by the powerful tools of equilibrium statistical me-
chanics, and the steady state mode-locking properties are
obtained by calculating the free energy.

In the general case where the soliton condition does not
hold, the master equation does not obey the potential
condition, and the steady state distribution is unknown.
However, the steady state can be studied directly from the
master equation by the following mean-field-like argu-
ment: in the thermodynamic limit, waveform configura-
tions which have a significant probability in the steady
state distribution are either a combination of a narrow pulse
( s) which carries a macroscopic fraction of the intracavity
power with a noisy cw background ( n), or pure cw
configurations. This hypothesis was rigorously established
in the soliton case [10]. It is also supported by numerical
analysis as we show below.

Since the pulse peak power is much larger than the mean
power P, the decomposition scheme implies that the dy-
namics of the pulse is governed mainly by the deterministic
terms in Eq. (1) [14]. The continuum background has a
much weaker amplitude, therefore the nonlinear term in

Eq. (1) does not contribute significantly to its dynamics.
Furthermore, the pulse occupies only a very small fraction
of the cavity length, and therefore the contribution of the
pulse waveform fluctuations to the entropy is negligible in
the thermodynamic limit. The  fluctuations are therefore
well described by Eq. (1), with the nonlinear term omitted.

We therefore approximate Eq. (1) by:

 

@ s
@t
� A

@2 s
@z2 � Bj sj

2 s � g s (2)

 

@ n
@t
� A

@2 n
@z2 � g n � ��z; t�: (3)

The equations are coupled by the common net gain coef-
ficient g. In the thermodynamic limit the fluctuations in g
are small [10], and it is determined by the condition that the
total power expectation 1

L

R
dz�j sj2 � hj nj2i� has a con-

stant value P. We will search for a steady state solution of
(2) and (3) consisting of a pulse of power xP, 0 � x < 1,
and a continuum background of mean power �1� x�P.

The steady state pulse solution of Eq. (2) with power xP
is the well-known chirped soliton pulse [12]:

  s�z; t� � �x
2PL=�2Lp�	

1=2ej�tsech1�j��xz=Lp�; (4)

where the chirp parameter is � � �3=2��ReAB�=

ImAB� 

����������������������������������������������������
8=9� �ReAB�=ImAB��2

p
	, the � (plus) sign

for�> �, and� (minus) for�< �, and the pulse width is
Lp � �6jAj2�=�PLImAB��. The overall net gain g expe-
rienced by the pulse is

 g � �L=�4Lp� ��sPx
2;

��s � �4=3���s � �g�1� �2�=�PLLp�	;
(5)

��s is the effective nonlinear gain coefficient acting on the
pulse; it reduces to �s when the soliton condition holds.
The dynamical time scale tp � � ��sP��1 is the time scale
governing the pulse buildup process [see Eq. (14) below].

The linear Eq. (3) describes the dynamics of noninter-
acting modes, and is most conveniently studied in Fourier
space, where it becomes

 

_a k � �g� Ak2�ak � �k�t�; (6)

where ak and �k are the Fourier transforms of the field  
and the noise �, respectively, and k � �2�=L�n, n integer.
Multiplying the last equation by a�k and taking the real part
of the expectation value gives, using h�ka�ki � T,

 _x k=2 � �g� �gk2�xk � t�1
c ; (7)

where xk � hjakj2i=P is the average power fraction in
mode k and tc � P=T is the noise time scale which de-
scribes the accumulation of noise power in the cavity. In
the steady state _xk is zero and we can solve Eqs. (7) for xk,
and find the total noise power fraction

 1� x �
X
k

xk � t�1
c L=�2

�������������
��gg
p

�; (8)
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the last equality holds in the thermodynamic limit L� Lc,
where Lc �

�gP
LT [10] is the correlation or coherence length.

Eliminating g from the last equality gives:

 g � �
L2T2

4�gP
2�1� x�2

� �
L

4Lc
t�1
c

1

�1� x�2
: (9)

As previously pointed out, in a statistically steady state
the pulse and continuum must experience the same gain.
Therefore, by using Eqs. (5) and (9), we obtain:

 

1

2
x�1� x� �

��������������������
Lp
4Lc

T

��sP
2

s
�

1�����������
�L�t
p ; (10)

where �L � 4Lc=Lp and �t � tc=tp. Then,

 x � �1=2��1

����������������������������
1� 8=

�����������
�L�t
pq

�; (11)

where �L�t � ��sP
2=T�2f1=f2, f1 � 2��� ��2�

�
�����������������������������������������������������
8��� ��2 � 9�1����2

p
� 8���� �� � 9�1����	,

f2 � 9�1��2�2�3�1�����
���������������������������������������������������
8�����2� 9�1����2

p
	.

Therefore, a necessary condition for mode locking is ob-
tained by requiring that the roots x are real:

 

�����������
�L�t
p

 8: (12)

When Eq. (12) does not hold, gain balance is impossible to
satisfy, and the only stationary configuration is cw. For the
soliton condition, �L � �t � �sP

2=T, and Eqs. (10)–(12)
conform with established results regarding the existence of
a metastable pulsed state in this case [10].

An important consequence of Eqs. (10) and (12) is that
the pulse power at threshold is nonzero. In fact, it is always
precisely one half of the intracavity power, regardless of
the values of other system parameters. In particular, it
follows that pulse formation is abrupt, signifying a first
order phase transition, as previously observed under the
soliton condition [3,10]. It can also be shown that mode
locking is statistically more stable than cw when

������������
�L�T
p



9, that corresponds to pulse-to-total power ratio greater
than two thirds.

The destabilization threshold can be obtained from
Eq. (12) (with the equal sign):

 �T=��sP2�	threshold � �1=8�
������������
f1=f2

q
� f��;��: (13)

f gives the maximal allowable noise for a given pumping
or the minimal mode-locking power for a given noise level,
as shown graphically by color coding in Fig. 1.

There are two notable properties of the function f. First
there is a region in parameter space (�, �) where f2 � 0 or
has a nonzero imaginary part—the very dark (green) color
in Fig. 1. This is a region where, because of refractive
effects, the overall net gain acting on the pulse is positive.
Mode locking is not possible under such conditions [2]
because positive overall net gain inevitably leads to noise
buildup and an ultimate cw state, an observation which is
confirmed and generalized by our analysis. Second, the

maximal value of f is not achieved under soliton condi-
tions � � � (where f � 1=8). For large � and �, it occurs
for � � 2� where f ! 1=�4

���
3
p
�.

Now we address the question of stability of the pulse
states. It follows from Eq. (11) that above threshold there
are two pulse states, one with pulse power above and one
with pulse power below one half of the intracavity power.
Under the soliton conditions, the two states correspond to
the extrema of the free energy function—the state with the
high pulse power to a minimum, and the lower pulse power
to a maximum, from which it follows that the former is
(locally) stable while the latter is unstable with respect to
small perturbation. The same picture is shown below to
hold in the general case.

Our analysis relies on the assumption that the perturbed
pulse waveform retains the chirped soliton shape [Eq. (4)]
with perturbed pulse power. This is tantamount to the
dynamical stability of the chirped pulse solution of the
noiseless master equation, which has been shown to hold
in the entire range of system parameters with negative net
gain, provided that gain is saturated enough [8]. Then
Eq. (2) yields the following equation for the pulse power
fraction x�t�

 _x=2 � �L=4Lp� ��sPx
3 � gx; (14)

this equation has to be combined with Eqs. (7) for the
continuum modes powers, and g is then determined by the
condition x�

P
kxk � 1.

For the stability analysis we let x � x�0� � x�1�, xk �
x�0�k � x

�1�
k , g � �g�0� � g�1�, where x�0� is a solution of

(10), and x�0�k and �g�0� are the steady state values, while
x�1�, x�1�k , and g�1� are assumed to be small. The linearized
equations are

 _x �1�=2 � 2g�0�x�1� � g�1�x�0�; (15)

FIG. 1 (color online). The normalized pulse destabilization
noise power f��;�� [Eq. (13)] shown as a color coded function.
Bright (yellow) colors correspond to high noise thresholds (high
resistance to noise), and dark (green) colors to low thresholds. At
the very dark regions pulse formation is impossible (zero thresh-
old). Note that the region for the most immune pulses against
noise destabilization (maximum f) is not the soliton condition
line � � �, but asymptotically at � � �=2.
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 _x �1�k =2 � ��g�0� � �gk2�x�1�k � g
�1�x�0�k : (16)

For eigensolutions with eigenvalue �=2, Eq. (16) gives:

 x�1�k � x�0�k g
�1�=��� g�0� � �gk

2�: (17)

The linear stability of the steady state depends on whether
the system Eqs. (15) and (16) has eigensolution with
positive �. For such an eigensolution Eqs. (17) can be
summed over k giving

 x�1� � �x�0� � 1�g�1�=�
����������������������������
g�0��g�0� � ��

q
� �g�0� � ��	 (18)

using also Eq. (9). The last equation is combined with
Eq. (15) to yield a homogeneous equation for x�1�, which
has a nonzero solution if and only if

 x�0� � �2� s�=�3�
������������
1� s
p

�; s � �=g�0�: (19)

s is the nondimensionalized version of the eigenvalue �,
which is related by the last equation to the steady state
pulse power fraction x�0�. In the domain of validity, �1<
s < 2, x�0� is a decreasing function of s, and x�0�

�s�0� � 1=2.
Recall that the sign of s determines the stability of the

pulsed state. Hence a mode-locked state is stable whenever
the pulse power is larger than one half of the intracavity
power, marginally stable when it is exactly one half of the
intracavity power, and unstable when the pulse is weaker.
Note that this stability property is valid, again, regardless
of the values of the other parameters.

Combining the last result with the analysis above, we
observe that solutions given in Eq. (11) above threshold
comprise of one stable branch of pulse states with pulse
power fraction greater than one half, and one unstable
branch with pulse power fraction below one half. The
two branches cross at the threshold values of system pa-
rameters, where pulsed solutions cease to exist, and below
threshold the only statistical steady state is cw.

As an independent test of the theory we performed di-
rect numerical analysis of the dynamical equation (1).
Graphical results are shown in Figs. 2 and 3. The left part
of Fig. 2 shows three snapshots of the waveform inside the
cavity, with zero, subthreshold, and superthreshold noise
powers. The qualitative properties conform with the theory.

The pulse destabilization noise power Tth itself was iden-
tified as a point of discontinuity in the rf power�

R
j j4dz,

which drops by a large factor of the order of L=LP; see the
right part of Fig. 2.

In this manner Tth was measured for several values of �
and �. The simulation results agree very well with the
theoretical predictions, as seen, for example, in Fig. 3 for
the normalized threshold noise power Tth=�sP

2 (stars) and
the theoretical prediction (continuous line), for � � 1 and
several values of �.
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FIG. 3 (color online). Analytical (line) and numerical (stars)
threshold values of T=�sP2 vs �, for � � 1. Note again that the
best stability against noise is achieved here at � � 2:353, rather
than at � � 1, where the soliton condition holds.

FIG. 2 (color online). Left: simulations of the waveforms in
the cavity with � � � � 1 and noise powers that are zero (red),
below (blue), and above (green) the threshold of the pulse
destabilization level. Right: numerical rf power vs normalized
noise level T=�sP2; we used � � � � 1 (red), and � � 1, � �
2 (green).
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