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Reshaping Periodic Light Pulses Using Cascaded
Uniform Fiber Bragg Gratings

Naum K. Berger, Boris Levit, and Baruch Fischer

Abstract—The authors demonstrate the use of cascaded uni-
form fiber Bragg gratings (FBGs) for the generation of periodic
optical pulses with arbitrary waveform. It is a significantly simpli-
fied structure compared to complex FBG shapes. The pulse shap-
ing is based on splitting of the input pulses by low-reflecting FBGs
into a number of replicas and their superposition with proper
amplitude, time delay, and phase shift that depend on the FBG
parameters. The reflection amplitude and phase of each grating
are unambiguously determined by the needed pulse shape. This
method was experimentally verified for converting sinusoidally
phase-modulated radiation of continuous-wave laser diode into
a Gaussian pulse train with a pulsewidth of 30 ps. A method
for controlling the parameters of FBGs during their fabrication
process is also presented. It is done by measuring the spectral
interference between the reflections from the FBGs and the fiber
end by an optical spectrum analyzer and performing a fast Fourier
transform. The method allows correction of the FBGs until the
needed parameters are obtained during the writing process, as
well as at any time after that.

Index Terms—Arbitrary waveform, FBG control, fiber Bragg
gratings (FBGs), optical-pulse shaping.

I. INTRODUCTION

THE DEVELOPMENT of all-optical techniques for the
manipulation and reshaping of optical pulses has a great

importance for ultrahigh-capacity optical communication, non-
linear fiber optics, coherent or quantum control, and for other
applications [1]. Conventional methods for pulse shaping are
mostly based on time-to-space conversion in bulk [1] or
arrayed-waveguide gratings [2]. In such devices, the incident
pulse is first spatially (and accordingly spectrally) dispersed by
a first diffractive grating and lens along a spatial modulator,
then, it is filtered and recombined by a second lens and a
diffractive grating, which compensates the induced dispersion.
As a spectral filter, one can use a fixed mask [3], programmable
liquid crystal [4], or acousto-optic [5] spatial modulators. The
use of a programmable spatial modulator allows realizing adap-
tive real-time pulse shaping [6], in which a desired pulse shape
can be achieved without previous characterization of the pulse
to be reshaped. The spectral filtering of the input pulse was
also performed in the time domain [7]. In this case, the pulse
was temporally (and spectrally) dispersed and compressed by
a fiber-grating system, and a temporal electrooptic modulator
between the two dispersions was used instead of a spatial
modulator.
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Recently, fiber Bragg gratings (FBGs) were shown to provide
an in-fiber pulse shaper [8]–[12]. The advantages of FBGs
are in their simplicity, compactness, and inherent ability to be
integrated in all-fiber systems, needed, for instance, in opti-
cal communication. The pulse shaper consisting of two step-
chirped FBGs with the opposite dispersion signs [8] is similar in
its idea to the aforementioned bulk zero dispersion system [1].
The difference is only in the lack of the mask between the two
dispersion parts. The needed spectral phase shift is encoded in
the spatial structure of the second chirped grating, and it also
can function as a spectral phase-only filter. An analogous use
of a single chirped FBG for pulse shaping was demonstrated
in [9] and [10]. Grating apodization was made to have a form
that fits the spectrum of the shaped pulse, and uncompensated
grating chirp was used for additional pulse-rate multiplication
[9] or for achieving the condition for spectrum-time conversion
[10], in which the shape of the output pulse resembles its
spectrum. Grating chirp is not so necessary for pulse shaping
by an FBG. Rectangular picosecond pulses were obtained with
a superstructured FBG [11] without any chirp. For a weakly
reflecting grating, the spatial refractive index modulation profile
of the grating is given by the Fourier transform of the needed
spectral response of the shaping FBG.

Generally, an apodized (superstructured) FBG for pulse
shaping can be considered as a spectral filter with a transfer
function converting the spectrum of the input pulse to that of
the target pulse [11]. Such filter is equally suitable both to a
single pulse and to a pulse train with an identical pulse shape.
However, for the shaping periodical pulses, the transfer function
ought to be determined only for a discrete number of frequen-
cies, corresponding to the spectral harmonics of the input-pulse
train. The values of the transfer function can be arbitrary for
the other frequencies. This situation substantially simplifies
the needed structure of an FBG shaper. It was shown in [12]
that the conversion from bright-to-dark periodic soliton pulses
can be performed with a single uniform FBG with properly
chosen grating parameters. However, it could provide only an
approximate solution, and just for this particular case. As was
pointed out in that paper [12], the number of free parameters
was insufficient for obtaining the exact pulse shape.

In this paper, we demonstrate that the arbitrary shape (am-
plitude and phase) of periodic optical pulses can be obtained
by using a number of consecutive equidistant uniform FBGs
with reflectivity and reflection phase of each grating determined
by the needed pulse shape. For weak reflection, each grating
produces a weighted, phase shifted, and time delayed replica
of the input pulse. All of these replicas are superimposed, and
their superposition and interference give the pulse with the
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Fig. 1. Pulse shaping by uniform FBGs: conversion of bright-to-dark soliton
pulses.

desirable shape. We describe a method for FBG control during
the writing process for obtaining the gratings with the required
reflectivity and reflection phase. The method allows correcting
the reflection phase not only at the time of the grating produc-
tion, but also at any time after that. For the demonstration of
the pulse reshaping, we chose as, an example, the conversion
of sinusoidal phase modulated continuous-wave (CW) light
into a Gaussian pulse train. We performed the simulations and
experiments with CW laser diode and a shaper consisting of six
uniform gratings, and obtained good agreement. The advantage
of the pulse shaping with uniform FBGs is its simplicity and
also its possibility to correct the shaper if changes occur.

II. METHOD FOR THE PULSE RESHAPING

The principle of the pulse shaping with uniform FBGs
is demonstrated in Fig. 1. The input pulse to be reshaped
[Fig. 1(a)] is reflected from M equidistant uniform FBGs. The
distance between the gratings is chosen to provide the time
delay T/M between the adjacent replicas, where T is the pulse
train period. We assume that the reflection of each grating is
low so that multiple reflections can be neglected. Thus, the
input pulse reflecting from the gratings is split into M replicas,
each with its amplitude, time delay, and phase shift defined
by the reflectivity and the reflection phase of each grating.
The reflected pulse replicas overlap and interfere in the time
domain. It is shown below that by proper choice of the grating
reflectivities and reflection phases, the desired pulse shape can
be obtained as a result of this interference. Such reshaping
is shown in Fig. 1, where the conversion from bright-to dark
soliton pulses by ten uniform FBGs is demonstrated. The input
periodic pulses (Fig. 1(a) shows only one period) are split into
ten time-delayed replicas [Fig. 1(b)]. Superposition of the pulse
replicas gives the dark soliton pulse shown in Fig. 1(c).

Mathematically, the problem is formulated in the following
form. For reshaping of the input-pulse train, we have to know
its complex field spectrum Fin(ω), the field spectrum Fsh(ω) of
the desired shaped pulse, and, accordingly, the needed complex
transfer function H(ω)

H(ω) = Fsh(ω)/Fin(ω). (1)

It is important to note that the transfer function G(ω) of the
FBG pulse shaper can generally differ from H(ω). However,
they must be equal for the discrete frequencies of the pulse
harmonics, i.e.,

G(ωm) = H(ωm) (2)

where ωm = m · ω0 is the frequency of the mth pulse har-
monic m = 1, 2, . . . , N , where N is the number of the nonzero
harmonics in the input-pulse spectrum, and ω0 = 2π/T is the
fundamental frequency. For the sake of simplicity, we assume
that the reflection of each uniform grating does not depend of
the wavelength. Such an assumption can be made if the grating
spectrum is much wider than the spectrum of the input pulse.
Thus, the transfer function of M uniform low-reflecting FBGs
can be written in the form

G(ω) =
M∑

k=1

rk exp(ikωT/M) (3)

where rk = |rk| exp(iϕk), and |rk| and ϕk are the field reflec-
tivity and the reflection phase of the kth grating, respectively.
By substituting (3) into (2), we obtain

M∑

k=1

rk exp(ikωmT/M) = H(ωm). (4)

It is clear that (4) can be considered as a system of N linear
equations for N unknown values of the complex reflectivities
rk. Solving this system gives us the required values of the
intensity reflectivity Rk = |rk|2 and the reflection phase ϕk

of each grating. Note that according to (3), G(ω) represents a
linear combination of rk. Therefore, the reflectivity of one of
the gratings, for instance the first one, can be taken as given. In
this case, the number of gratings should be

M = N + 1. (5)

It obviously follows from (5) that this type of pulse shaping is
extremely suitable for pulse trains with a low number (N ) of
pulse harmonics (i.e., high duty cycle of the pulse train).

The pulses presented in Fig. 1 are the result of the numeri-
cal simulations made according to this approach. The needed
transfer function of the shaper was taken in the form H(m) =
1/(2m + 1) [12], where m is the number of the pulse har-
monics. The input-pulse amplitude was assumed to be E(t) =
sech[1.76 · t/τ ] with the pulse intensity full-width at half-
maximum (FWHM) of τ = 20 ps. The pulse period was 125 ps.

III. SIMULATION RESULTS

For the demonstration of the pulse shaping with uniform
FBGs, we chose, as an example, conversion of sinusoidally
phase modulated CW light into a Gaussian periodic pulse train.
We first performed appropriate simulations. In the simulations,
monochromatic CW light is sinusoidally phase modulated,
such that ϕ(t) = A · cos(ω0t), (ω0 = 2πf0) with a modulation
frequency f0 = 10 GHz and a modulation index A = 0.8 rad.
Such a periodic optical signal has a field spectrum Fin(ωm)
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Fig. 2. Calculated field spectra of sinusoidally phase modulated CW light
(squares) and of Gaussian periodic pulses (crosses). The modulation frequency
is 10 GHz; the modulation index is 0.8 rad; and the intensity width (FWHM) of
the Gaussian pulses is 30 ps.

Fig. 3. Calculated transfer function needed for the conversion of the spectra
shown in Fig. 2 (circles) and calculated one of the shaper consisting of six FBGs
with the parameters given in Table I (solid line).

shown in Fig. 2 (by squares). The phase modulated optical
signal is converted to Gaussian periodic pulses with a field
amplitude Esh(t) ∝ exp(−1.386t2/τ2

G) having a pulse inten-
sity FWHM of τG = 30 ps. The field spectrum Fsh(ω) of the
Gaussian pulses is shown in Fig. 2 (by circles). It can be seen
from Fig. 2 that the absolute values of the spectra of the input
and shaped pulses are very close. Only the harmonics with
m = −1 have a negative sign. This means that the main action
of the pulse shaping in this case is to invert the sign of this
harmonic of the input optical signal.

We can see in Fig. 2 that there are only five harmonics in
the spectra Fin(ωm) and Fsh(ωm), which significantly differ
from zero. Therefore, we chose N = 5 and the number of the
gratings in the shaper M = N + 1 = 6. The transfer function
H(ωm) needed for the reshaping was calculated according to
(1), and its values are shown in Fig. 3 (by circles). The system of
(4) was solved, and the obtained values of the intensity reflectiv-
ity Rk and the reflection phase ϕk of the gratings are presented
in Table I. The transfer function of the shaper consisting of the
six FBGs calculated according to (3) is shown in Fig. 3 (by solid
curve). It can be seen that the values of this transfer functions
G(ωm) for the frequencies of the harmonics are exactly equal
to the needed transfer function H(ωm) shown by circles.

The intensity of the shaped pulses is given by a Fourier series

Ish(t) ∝
∣∣∣∣∣

3∑

m=−3

Fin(ωm)G(ωm) exp(imωmt)

∣∣∣∣∣

2

. (6)

TABLE I
REFLECTIVITY AND REFLECTION PHASE OF EACH FBG

CALCULATED AS A SOLUTION OF (4)

Fig. 4. Pulse shaper consisting of six uniform FBGs.

Fig. 12 (dotted line) shows the shaped Gaussian pulses calcu-
lated according to (6).

IV. CONTROL OF THE FBGS DURING THE

WRITING PROCESS

It was very important to produce the FBGs with the reflectiv-
ities and reflection phases close to the calculated ones (Table I).
For the grating control, we followed a method similar to that
described on our paper [13]. The method includes the measure-
ment of the reflectivity and reflection phase of each grating and
corrections during the writing process until the desired values
are obtained. However, in this method, we could not correct the
changes in the gratings, which occurred after the grating writing
is completed, and therefore, we made modifications.

According to the simulations, we produced an FBG pulse
shaper consisting of six FBGs. The Bragg gratings were formed
in a boron-doped photosensitive fiber by CW UV radiation
(λ = 244 nm) using a phase mask. The length of each grating
was 0.27 mm, enabling an almost constant reflectivity in the
region of the pulse spectrum. The spacing between adjacent
gratings was 1.708 mm. The gratings were written sequentially,
beginning from grating #1 (see Fig. 4).

The FBG control was performed in the following manner.
During the grating writing, we probed it with light of sponta-
neous emission of an erbium-doped fiber amplifier that is re-
flected from the FBGs and the fiber end (Fig. 4). The reflection
was analyzed by an optical spectrum analyzer with a resolution
of 0.01 nm. We could neglect the multiple reflections because
the reflectivities of the FBGs and the fiber end are low. Thus, we
can write the field spectrum Gend(ω) of the gratings together
with the fiber end as a sum of the spectra of each element taking
into account the phase shifts caused by their different distances
from the output plane. The spectrum of the gratings with the
fiber end measured by a spectrum analyzer is proportional to
|Gend(ω)|2. Thus, we obtain

|Gend(ω)|2 =
∣∣∣rend exp(−2iωnlend/c)

+
M∑

k=1

|rk(ω)| exp [iϕk(ω)] exp(−2iωnlk/c)
∣∣∣
2

(7)

where rend is the field reflectivity of the fiber end, n is the core
effective refractive index (n = 1.462), c is the velocity of light,
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Fig. 5. Spectrum of the reflection from the four written and corrected FBGs
and the fiber end.

lend and lk are the distances between the fiber end and kth grat-
ing, respectively, and the output plane. It can be seen from (7)
that the measured spectrum contains three kinds of the terms:

Rend +
M∑

k=1

Rk(ω) (8)

|rk(ω)rs(ω)| exp [iϕk(ω) − iϕs(ω)]

× exp [−2iω(k − s)nL/c] (9)

rend |rp(ω)| exp [iϕp(ω)] exp(−2iωnLpe/c) (10)

where Rend and Rk are the intensity reflectivities of the
fiber end and kth grating, respectively, s, p = 1, 2, . . . ,M , L
and Lpe are the distances between the adjacent gratings, and
between the pth grating and the fiber end, respectively. Term (8)
corresponds to the sum of the spectra of all gratings written until
that time. Terms (9) and (10) correspond to the interference
between the reflections from the kth and sth gratings and from
the pth grating and the fiber end, respectively. Term (9) has a
factor exp[−2iω(k − s)nL/c] oscillating with ω and a slowly
varying amplitude |rk(ω)rs(ω)| exp[iϕk(ω) − iϕs(ω)]. This
means that in the Fourier transform of (9), we have a number
of bands with finite widths. Analogous bands are obtained by
a Fourier transformation of (10). The Fourier transform of (8)
gives a contribution to the zero frequency band. If these bands
can be separated, we can process the spectral interference
pattern (7) as done for the spatial interference case [14].

During the writing process, a fast Fourier transform was
performed in real time on the reflection spectrum, measured by
an optical spectrum analyzer. For example, we show in Fig. 5
the spectrum measured at the stage when four of the six FBGs
were written. The Fourier transform of this spectrum (that also
included the reflection from the fiber end) is shown in Fig. 6.
The central band in Fig. 6 is the Fourier transform of term (8).
By selecting the central band and performing its inverse Fourier
transform, we obtain the sum of the spectra of four gratings.
For obtaining the spectrum of the currently writing grating
(in our example, the fourth written grating #4), we subtracted
the known spectra of the previously written gratings. The next
three sidebands in Fig. 6 correspond to terms (9). For the
measurement of the grating reflection phases ϕp(ω), we used
the terms (10), which correspond to the four last sidebands in
Fig. 6. For instance, the left sideband in the right set of the four

Fig. 6. Absolute value of the Fourier transform of the spectrum shown
in Fig. 5. The set of four sidebands on the left and right sides corresponds to the
spectral interference between each grating and the fiber end.

Fig. 7. Absolute value of the Fourier transform for the spectrum of the
reflection from the six written and corrected FBGs and the fiber end.

TABLE II
MEASURED REFLECTIVITY AND REFLECTION PHASE OF EACH FBG

sidebands corresponds to the interference between the grating
#4 and the fiber end. By selecting this sideband, taking its
inverse Fourier transform and taking argument of the obtained
complex values, we obtain, according to (10), the reflection
phase ϕ4(ω). The distance L6e between the sixth grating and
the fiber end was chosen from the condition L6e > 5L. In this
case, two sets of bands, corresponding to the Fourier transforms
of expressions 9 and 10, do not overlap (see Fig. 7).

It is important to note that the measurement of the reflectivity
and the reflection phase of a currently writing grating were
made independently. The grating was written until the needed
reflectivity was obtained, and then, the reflection phase was
measured. A correction of the reflection phase was performed
by UV irradiation without a phase mask of the spacing between
the gratings. In such a way, we changed not the phase ϕp(ω)
but the refractive index n. It can be seen from (10) that the
effect of this action is the same for a fixed frequency.

The measured reflectivities and reflection phases (for
λ = 1541.31 nm) after the corrections for the six FBGs are
presented in Table II. It can be seen that the measured values
are very close to the calculated ones presented in Table I.
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Fig. 8. As those in Fig. 7, when an index-matching gel was deposited on the
fiber end of the shaper. It can be seen that the sidebands corresponding to the
reflection from the end almost disappear.

Fig. 9. Reflection spectra of the six FBGs measured (solid curve) and calcu-
lated according to (3) with the parameters given in Table I (dotted curve).

In [13], we extracted the information about the phases ϕp(ω)
from terms (9). However, it could be made each time only for
the last written grating. This means that after completing the
writing process, any additional phase correction could not be
performed. The use of the fiber-end reflection allows measuring
and correction of each grating phase independently and at any
time. When we used the FBGs as a shaper, we eliminated the
reflection from the fiber end putting on it an index-matching
gel. Figs. 7 and 8 show the Fourier transform of the measured
spectra of the six corrected FBGs without and with the
index-matching gel, respectively. It can be seen in Fig. 8 that
the gel removes the fiber-end reflections almost completely. In
Fig. 9, we present the measured spectrum of the six corrected
FBGs (solid line). For comparison, the spectrum of six FBGs
calculated according to (3) is also shown in the figure (dotted
line). It can be seen that the two curves are well matched.

V. EXPERIMENTAL RESULTS OF PULSE RESHAPING

We carried out experiments converting sinusoidal phase
modulated CW light into a Gaussian periodic pulse train, which
was presented in simulations in Section III. The experimental
setup is shown in Fig. 10. The light from a tunable CW laser
diode, which was sinusoidally modulated by a LiNbO3 elec-
trooptic phase modulator, was reflected from an FBG shaper
and was directed by a circulator to a photodetector and a
sampling oscilloscope (50-GHz bandwidth). The phase mod-
ulator was driven by an RF signal of 10 GHz formed by a
synthesizer and an RF amplifier. An index-matching gel was

Fig. 10. Experimental setup for the conversion of sinusoidally phase mod-
ulated CW light into a Gaussian pulse train: PC—polarization controller and
C—circulator.

Fig. 11. Laser-diode radiation spectrum taken after sinusoidal-phase
modulation.

Fig. 12. Shaped Gaussian pulses obtained in the experiment (solid line) and
the calculation according to (6) (dotted line).

deposited on the fiber end of the shaper in order to eliminate
the reflection from the end. The modulation index was set to
0.8 rad. It was measured from the relation of the components
in the spectrum of the light that passed through the phase
modulator (see Fig. 11). The energy loss of the input pulses
in the pulse shaper was 16 dB. Note that the condition of low
grating reflectivity is not a necessary condition in our method of
pulse shaping. It only simplifies the calculation and the control
of the FBGs. Thus, the grating reflection can be increased such
that the energy loss is decreased.

As a result of the pulse reshaping, we obtained nearly
Gaussian pulses with a pulsewidth (FWHM) close to 30 ps. An
excellent agreement between the calculated and measured
shaped pulses can be seen in Fig. 12.



BERGER et al.: RESHAPING PERIODIC LIGHT PULSES USING CASCADED UNIFORM FIBER BRAGG GRATINGS 2751

VI. CONCLUSION

We have demonstrated numerically and experimentally a
method for periodic pulse shaping using cascaded uniform
FBGs, which is simpler and advantageous over those systems
that used complicated structures of FBGs, with or without
chirp, and often made by apodization techniques. The principle
of the pulse reshaping by uniform FBGs is based on splitting
the input optical pulses by weakly reflecting cascaded gratings
and superposition of the reflected pulse replicas, each with their
own tailored time delay, amplitude, and phase shift determined
by the FBGs of the shaper. The superposition of the pulse
replicas providing the interference gives the required shape.
The needed reflectivity and reflection phase of each grating
is unambiguously calculated according to the desirable pulse
shape. Because the number of FBGs is determined by the
number of pulse train harmonics, this pulse-shaping method is
very suitable for the pulse trains with high duty cycle.

We have also developed a method for FBG control dur-
ing the fabrication process. It includes measurements of the
reflectivity and the reflection phase of each grating followed
by their corrections. The advantage of the said method is that
the measurement of phase deviations and their correction can
be made not only during the fabrication process, but at any
time after that. Pulse shapers based on uniform FBGs are
simple in implementation, potentially low cost, and therefore
can find wide applications in various fields, such as in optical
communication.
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