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Broadband Arbitrary Waveform Generation Based on
Microwave Frequency Upshifting in Optical Fibers

José Azaña, Member, IEEE, Naum K. Berger, Boris Levit, and Baruch Fischer

Abstract—An interesting method for broadband arbitrary
waveform generation is based on the frequency upshifting of a
narrowband microwave signal. In this technique, the original
microwave signal is imaged into a temporally compressed replica
using a simple and practical fiber-based system. Recently, it has
been shown that the conventional limitations of this approach
(e.g., bandwidth limitations) can be overcome by exploiting a tem-
poral self-imaging (Talbot) effect in fiber. This effect can be used
whenever the signal to be imaged is a quasi-periodic waveform
(e.g., microwave tones or any arbitrary periodic waveform). This
paper provides a comprehensive study of the microwave frequency
upshifting technique with special focus on the Talbot-based ap-
proach. Following a theoretical analysis of the design constraints
of the conventional approach, the Talbot-based solution is theo-
retically investigated in detail. In particular, the design specifica-
tions of a Talbot-based microwave upshifting system are derived,
and the practical capabilities and constraints of these systems
(e.g., in terms of achievable bandwidth) are stated and examined.
The theoretical findings are confirmed by means of numerical sim-
ulations. Moreover, a numerical study of the influence of higher-
order (second-order) dispersion terms on system performance
is presented, and some additional design rules to minimize the
associated detrimental effects are given. The results show that
microwave frequencies up to a few hundreds of gigahertz over
nanosecond temporal windows can be easily obtained with the de-
scribed technique using input optical bandwidths in the terahertz
range. This has been experimentally confirmed.

Index Terms—Arbitrary waveform generation, fiber optics, mi-
crowave photonics, optical propagation, optical signal process-
ing, Talbot effect, temporal imaging.

I. INTRODUCTION

THE DEVELOPMENT of novel techniques for the gen-
eration, control, and manipulation of high-frequency mi-

crowave signals is becoming increasingly important for several
scientific and industrial applications, including among others,
ultrawide-bandwidth (UWB), secure, and multiple-access radio
frequency (RF) communication systems, electronic counter-
measures, or pulsed radar and fiber wireless communication
systems. The generation of RF radiation (tones) above 40 GHz
using conventional methods (electronics) is extremely complex
and costly. Moreover, current electromagnetic arbitrary wave-
form generation (AWG) is limited to the range below ≈ 2 GHz.
It is well known that photonically assisted techniques can
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drastically enhance the performance of electronic systems for
the generation and manipulation of microwave signals [1]–[7].
In particular, several photonics-based techniques have been
demonstrated for the generation of microwave waveforms in
the gigahertz and multiple tens of gigahertz range. For instance,
photonic AWG has been demonstrated by individually modulat-
ing the intensity and phase of the longitudinal frequency modes
of a mode-locked semiconductor laser [3]. Optical and mi-
crowave waveforms with arbitrary wideband modulation have
also been generated using programmable spectral shaping of
a supercontinuum source followed by wavelength-to-time map-
ping in a dispersive line [4]. It has been shown that conventional
optical pulse shaping techniques, such as direct space-to-time
optical pulse shaping, can be used for the reconfigurable gen-
eration of broadband arbitrary electromagnetic waveforms [6].
The potential of combined dispersion and nonlinear effects in
optical fiber systems for generating complex microwave pulses
has also been investigated [5]. These optical techniques for
microwave generation are generally limited by the bandwidth
of the optical receiver [i.e., photodetector (PD)] to operations
up to a few tens of gigahertz.

An interesting alternative method for generating broadband
microwave signals is based on the frequency upshifting of a
narrowband microwave signal (which can be first generated
using conventional electronics) [1]. In this technique, the orig-
inal microwave signal is imaged into a temporally compressed
replica by means of a simplified temporal imaging (TI) system
(i.e., time lens process followed by dispersion); this system
can be practically implemented using an intensity electrooptic
(EO) modulator (to transfer the microwave signal into the
optical domain) surrounded by two dispersive fibers, in which
an ultrashort (ultrabroadband) pulse is used as the optical input
(see schematic in Fig. 1). This translates into a very simple and
practical system that offers the inherent advantages of a fiber-
based solution (compact and robust solution, potential for low
cost, etc.). It is important to note that this same system can be
configured to implement microwave temporal stretching; in this
case, the original microwave signal is imaged into a temporally
stretched replica at the system output [2]. Temporal stretching
can be used for analog-to-digital conversion of wideband mi-
crowave signals by slowing down the signal to be captured prior
to digitization; using this technique, the effective sampling rate
and input bandwidth of a given analog-to-digital converter can
be increased in proportion to the time stretch factor.

The main drawback of the microwave frequency upshifting
approach in [1] is that in principle, the maximum microwave
bandwidth that can be generated with this approach is very lim-
ited. This bandwidth limitation is intrinsic to the specific system
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Fig. 1. Schematic of the fiber-based microwave frequency upshifting technique.

configuration for obtaining TI [2], [8]. Briefly, as compared
with an ideal TI system (dispersion + time lens + dispersion)
[9], a simplified TI system (time lens + dispersion) leads to a
nonfocused image in time. A nonfocused image manifests itself
as a classical dispersion where slow phenomena appear clearly
but fast phenomenas (high frequencies) are filtered out. This
nonfocused imaging process is essentially responsible for the
anticipated limitation in the maximum microwave frequency
that can be handled (e.g., generated) by a simplified TI system.
As an example, the maximum RF frequency that could be
generated with the system demonstrated in [1] was 25 GHz
(starting from a 10-GHz tone), although an input optical source
with an ultrabroadband bandwidth of ≈ 4 THz was employed.

The dispersion penalty in a simplified TI system is qual-
itatively similar to that occurring in analog fiber links [8].
Based on this similarity, it has been shown that this penalty
(and the associated bandwidth limitation) can be minimized
by employing optical single-sideband (SSB) intensity mod-
ulation instead of the conventional optical double-sideband
(DSB) modulation scheme [10]. In a simplified TI system,
optical SSB should be implemented using phase discrimination
methods, which require the use of a double-arm Mach–Zehnder
modulator. Obviously, this translates into a significantly in-
creased complexity in the EO modulation scheme. Another
important drawback of the SSB modulation technique is that
it introduces an additional nonlinear phase distortion, which
is especially detrimental when used over a broad bandwidth
(such as in the case of our application); this also limits the
microwave bandwidth over which these systems can be applied
in practice.

More recently, we have demonstrated that the typical band-
width limitation in a simplified TI system (based on conven-
tional DSB modulation) can be easily overcome by exploiting
a temporal self-imaging (Talbot) effect in the optical fiber [7].
This effect can be used whenever the microwave signal to be
temporally imaged (compressed) is an arbitrary periodic RF
signal (e.g., microwave tones). By using the temporal Talbot
effect, a similar configuration to that used for a nonideal simpli-
fied TI (time lens + dispersion) can be used to create a TI system
that leads to a focused image of the original event (i.e., like in
an ideal TI system). In this way, the typical dispersion penalty

in these systems is significantly reduced, and in fact, it has been
shown that the Talbot-based approach provides an unparalleled
design flexibility to achieve a desired frequency upshifting.
In particular, based on this approach, microwave tones of
around 50 GHz have been generated from ≈ 10-GHz tones
using a relatively modest input optical bandwidth (of order of
1 THz) [7]. The superior capabilities provided by the Talbot-
based microwave frequency upshifting technique have been
further demonstrated by upshifting ≈ 40-GHz microwave tones
to achieve optical temporal waveforms (sinusoidal envelopes)
above 350 GHz [7].

This paper provides a comprehensive study of the microwave
frequency upshifting technique [1], [7]. The principle of oper-
ation of the conventional approach [1] is first investigated in
detail (Section II); in particular, the equations governing a con-
ventional microwave frequency upshifting system are derived,
from which the main limitations of this approach (e.g., in terms
of achievable bandwidth) are deduced and discussed. The main
core of our paper is the theoretical analysis of the Talbot-based
microwave frequency upshifting method (Section III). The prin-
ciple of operation of this method is described in detail and the
design specifications of a Talbot-based system for frequency
upshifting are derived. Based on these results, the practical
capabilities and constraints of these systems (e.g., in terms
of achievable microwave bandwidth) are clearly stated and
examined. Our analysis shows the superior performance offered
by a microwave frequency upshifting system when configured
to exploit the temporal Talbot effect. Moreover, we show that
the Talbot-based approach is not restricted to strictly periodic
RF signals but can also be applied on quasi-periodic temporal
waveforms, such as slowly (amplitude and/or phase) modulated
microwave tones. The design constraints of a Talbot-based
frequency upshifting system for operating on quasi-periodic
temporal waveforms are also derived here. Numerical simu-
lations are provided to illustrate the Talbot-based frequency
upshifting approach, thus confirming our main theoretical find-
ings (Section IV). Moreover, a numerical investigation of the
influence of higher order (second-order) dispersion terms on
system performance is presented and some additional design
specifications are derived from this investigation. For complete-
ness, in Section V, we describe in detail our previously reported
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proof-of-concept experiments on the Talbot-based microwave
frequency upshifting method. We summarize and conclude our
work in Section VI.

II. FIBER-BASED MICROWAVE FREQUENCY UPSHIFTING

A. Operation Principle

The concept of microwave frequency upshifting is based on
imaging a given low-frequency microwave waveform (which
can be generated by conventional electronic methods) into a
temporally compressed replica. This TI process can be achieved
by using the simple fiber-based system shown in Fig. 1. An
ultrashort optical pulse is first dispersed in a dispersive element
(e.g., optical fiber), which introduces a total dispersion β̈1L1,
where β̈1 is the first-order dispersion coefficient of the fiber,
β̈1 = [∂2β1(ω)/∂ω2]ω=ω0 (β1(ω) is the fiber propagation con-
stant as a function of the optical angular frequency ω, and ω0

is the pulse’s central frequency), and L1 is the fiber length. The
dispersed optical pulse is temporally modulated by the input
electrical (microwave) signal using an intensity EO modulator.
In this way, the microwave waveform is transferred into the
optical domain; moreover, the linear chirp (quadratic phase) of
the optical pulse after dispersion is imposed onto the microwave
signal. This mechanism of quadratic phase modulation (PM)
of the temporal microwave waveform can be interpreted as a
time lens [9]. The so-called temporal aperture of the system
(temporal window over which the TI system operates) is thus
determined by the temporal duration of the chirped optical
pulse at the output of the first dispersive line. A temporally
compressed replica of the amplitude waveform at the output
of the EO modulator (which in turn is proportional to the input
microwave waveform) can be obtained by simply propagating
this signal through a second dispersive line (e.g., optical fiber)
with a dispersion of opposite sign to that at the input. This
operation is usually referred to as TI [2], [9]. The signal is
finally transformed back into the electronic domain using a PD
operating as an optical-to-electrical converter.

To understand and analyze the TI system in Fig. 1, we assume
an ultrashort Gaussian pulse as the optical input to the system.
After propagation through the first dispersive line (optical fiber)
of length L1, this pulse is temporally broadened and chirped.
In particular, assuming that the input dispersion is sufficiently
high, the complex envelope of the pulse at the fiber output can
be expressed as
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with τ1 ≈ β̈1L1∆ωopt, where ∆ωopt is the input optical band-
width. Notice that in our analysis the time delays introduced
by the different elements in the system (i.e., dispersions and
EO modulator) are not considered. The chirped pulse is then
intensity modulated in an EO modulator (e.g., Mach–Zehnder
intensity modulator) by an arbitrary electrical (microwave) sig-
nal Vin(t). The modulation depth is assumed to be sufficiently
small to ensure a linear modulation operation. In this way, the
electrical waveform is transferred into the optical domain. In

particular, the optical signal at the output of the EO modulator
can be written as [2]
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where V ′(t) = exp(−[t/τ1]2)[1 + aVin(t)]. The expression in
(2) is valid as long as the modulation depth is sufficiently small,
i.e., a � 1. The time duration of the chirped optical pulse τ1

determines the temporal window over which the input signals
(to be temporally imaged) can extend. This is the so-called
temporal aperture of the system and is essentially determined
by the input dispersion and input optical bandwidth (see above
expression). The optical signal at the output of the EO mod-
ulator is dispersed again in a second dispersive line (optical
fiber) providing a total dispersion β̈2L2. As mathematically
demonstrated in the Appendix, if the spectral bandwidth of the
signal V ′(t) is sufficiently narrow, then the optical signal at the
output of the second dispersive line can be expressed as
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where Mt is the so-called temporal magnification factor, which
depends on the ratio between the output and the input disper-
sions in the system, i.e.,

Mt = 1 +
β̈2L2

β̈1L1

. (4)

The signal received at the output of the PD Vout(t) is propor-
tional to the average intensity of the optical signal at its input,
and as a result
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Thus, under proper conditions, the output electrical signal
is a magnified or compressed temporal replica of the input
electrical signal with a time magnification factor Mt given by
(4). In order to achieve temporal compression (i.e., frequency
upshifting), the TI system must be configured so that |Mt| < 1,
and as a result, the two dispersive lines in the system must
provide dispersions with opposite signs; see (4). In contrast,
temporal stretching of the original microwave waveform can be
achieved if the two dispersive lines have the same dispersion
sign [2]. Notice that at the system output, the compressed
(or magnified) replica of the input temporal waveform is mod-
ulated in amplitude by a slow Gaussian temporal envelope
over a total duration equal to the input temporal aperture (τ1)
multiplied by the time magnification factor of the system.
Moreover, the signal exhibits a dc background determined by
this same Gaussian temporal function.
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B. Bandwidth Limitations

According to the derivations in the Appendix, in order to
ensure that the output electrical signal is a temporal image of
the input electrical signal, the following inequality must be
satisfied:

|α|∆Ω2

8
� π (6)

where ∆Ω is the total spectral bandwidth of V ′(t) and 1/α =
(1/β̈1L1) + (1/β̈2L2). Inequality (6) implies that the time
features of bandwidth ∆Ω will almost not be distorted by
propagation through a dispersive medium introducing a total
dispersion equal to α.

The condition in inequality (6) imposes a fundamental lim-
itation in the maximum output electrical bandwidth that can
be generated with the described system. To be more concrete,
inequality (6) can be conveniently rewritten as

∆ω2
in � 2π

|Mt|
|β̈2L2|

(7)

where ∆ωin is the spectral bandwidth of the input microwave
signal. For instance, if the input signal is an electrical tone of
frequency ωm, i.e., V (t) = A cos(ωmt + φ), then ∆ωin = ωm.
In deriving (7), we have assumed that the input microwave
signal is much faster than the slow Gaussian temporal enve-
lope that modulates this signal when transferred to the optical
domain, i.e., ∆ωin � 2π/τ1; in this case, ∆Ω ≈ 2∆ωin. The
microwave frequency shifting operation can thus be interpreted
as a low-pass filtering process with a bandwidth constrained
by (7). This bandwidth can be increased only by reducing
the amount of dispersion in the second dispersive element,
which requires reducing the dispersion introduced by the first
dispersive element (in order to keep the same temporal mag-
nification factor). However, a reduction in the input dispersion
directly translates into a reduction of the temporal aperture of
the system. This fundamental tradeoff between the microwave
bandwidth and the temporal aperture in a simplified TI system
essentially determines the poor performance of this system in
terms of the maximum frequency that it can handle in practice
[10]. To be more concrete, assuming that the system is con-
figured to obtain a high temporal compression, i.e., |Mt| � 1,
then |β̈2L2| = |β̈1L1||Mt − 1| ≈ |β̈1L1|, and as a result, (7)
can be rewritten as

τ1∆ωin � 2π
∆ωopt

∆ωout
(8)

where ∆ωout ≈ ∆ωin/|Mt| is the bandwidth of the com-
pressed electrical signal (i.e., at the output of the system), and
we recall that τ1 ≈ |β̈1L1|∆ωopt is the system’s temporal aper-
ture. Thus, the time–bandwidth product of the system (in which
time refers to the input temporal aperture) is constrained ac-
cording to (8): A higher output frequency can be achieved only
by decreasing the system time–bandwidth product. Notice that
basically, the time–bandwidth product determines the number
of temporal features (of resolution δτ ≈ 2π/∆ωin) in the input
signal that can be imaged with a given system configuration.

To give reference, according to inequality (8), the maximum
microwave bandwidth that can be achieved with a given system
configuration is about one order of magnitude narrower than
the input optical bandwidth; in this case (∆ωout ≈ ∆ωopt/10),
the time–bandwidth product is limited to τ1∆ω1 ≈ 2π, which
means that only a single temporal feature can be imaged! As
a practical example, the maximum RF frequency that could be
generated with the system configuration in [1] was ≈ 25 GHz
(from a 10-GHz input tone) for an input temporal aperture of
≈ 2 ns, corresponding to a time–bandwidth product of ≈ 20.

In general, a microwave frequency upshifting system is re-
stricted to waveform generation over a limited time window.
Nonetheless, it should be emphasized that the generation of
time-limited broadband arbitrary waveforms is still highly de-
sired for many important applications, including UWB code-
division multiple-access (CDMA) systems, pulsed radar and
testing of communication receivers [4]–[6], among others.

III. FREQUENCY UPSHIFTING OF PERIODIC MICROWAVE

WAVEFORMS USING TEMPORAL SELF-IMAGING

IN OPTICAL FIBERS

The described constraints of a frequency upshifting system
operating on electrical waveforms can be significantly over-
come by exploiting a temporal self-imaging (Talbot) effect in
optical fibers [11]. Using this effect, one can achieve a focused
compressed (or magnified) temporal image of an arbitrary
periodic microwave temporal waveform by use of the same
simplified TI system (shown in Fig. 1) [8]. This so-called gene-
ral temporal self-imaging effect can be interpreted as the
time-domain equivalent of the well-known spatial self-imaging
(Talbot) effect under point source illumination [11]. We em-
phasize that in order to exploit the Talbot effect, the input mi-
crowave signal must be a (quasi-)periodic temporal waveform.
This includes nonmodulated or slowly (amplitude and/or phase)
modulated microwave tones (sinusoidal waveforms), or in gen-
eral, any given arbitrary periodic waveform. In what follows,
the design specifications of the Talbot-based approach for the
frequency upshifting of (quasi-)periodic microwave waveforms
will be derived, and the superior performance provided by
this approach as compared with the conventional one will be
discussed.

A. Operation Principle

Let us now assume that the input microwave signal Vin(t) is a
periodic temporal waveform of repetition period Tm (repetition
frequency ωm = 2π/Tm). With reference to Fig. 1, the optical
signal at the output of the EO intensity modulator can be ex-
pressed as in (2), in which V ′(t) = exp(−[t/τ1]2)[1 + aVin(t)]
consists of a periodic waveform (of period Tm) modulated
by a slow temporal Gaussian envelope. The problem under
consideration can be analyzed as follows: the quasi-periodic
optical waveform V ′(t) is first phase-modulated by a linear
chirp function exp(jt2/2β̈1L1) (temporal phase chirp φ̈t =
1/β̈1L1) and then propagates through a first-order dispersive
medium (e.g., optical fiber), which introduces a total dispersion
Φ̈ω = −β̈2L2. This same problem was investigated in [11], and
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general temporal self-imaging phenomena were anticipated. In
this paper, we will not replicate the mathematical details of the
analysis of this problem; rather, we will focus on the relevant
results for our specific application. It should be noted that the
proposal in [11] was oriented to processing optical waveforms
(instead of electrical waveforms, as in our application here).
This translates into a different implementation for the time
lens process (linear chirp temporal modulation). Different al-
ternatives exist for implementing a time lens over an optical
waveform, including EO PM [12] and sum–frequency genera-
tion in a nonlinear crystal [13]. The implementation of a time
lens process on a microwave waveform is relatively simpler.
As described above, this process can be realized by simply
modulating a chirped optical pulse with the microwave signal
to be processed in an EO intensity modulator, thus imposing the
optical linear chirp φ̈t = 1/β̈1L1 along the electrical temporal
waveform.

According to the analysis in [11], a temporal image of the
quasi-periodic optical waveform V ′(t) can always be obtained
at the output of the system if the time lens process and dis-
persive line in the system are properly designed to induce a
temporal self-imaging process, i.e., the so-called integer self-
imaging or Talbot condition must be satisfied. To be more
concrete, if this Talbot condition is satisfied, the electrical signal
at the output of our system (output of the PD) can be expressed
as in (5) with a temporal magnification factor Mt also given by
(4). As mentioned above, temporal compression (i.e., frequency
upshifting) can be achieved if the input and output dispersive
lines provide dispersions with opposite signs. The so-called
integer Talbot condition can be written as [11]

|β̈2L2| = N
T 2

m

2π
|Mt| (9)

where N is an arbitrary positive integer (N = 1, 2, 3, . . .). This
condition is strictly valid if the input signal is an ideal periodic
waveform.

In our case, the input signal V ′(t) is a quasi-periodic
waveform, i.e., a periodic waveform of temporal period Tm,
modulated by a slow Gaussian temporal envelope of duration
τ1. The problem of general self-imaging of a periodic wave-
form modulated by a duration-limited slow temporal envelope
has also been investigated in [11]. In particular, it has been
demonstrated that the temporal aberrations induced by the
time-limited temporal envelope on the output waveform (as
compared with the ideal temporal image of the input waveform)
are negligible if this temporal envelope is sufficiently slow to
satisfy the inequality ([11, eq. (40)])

∆ωenv � 2π
∆t0
NT 2

m

(10)

where ∆ωenv is the spectral bandwidth of the temporal enve-
lope and ∆t0 is the temporal duration of the periodic waveform
within a single period. In our analysis, the temporal envelope
is a Gaussian function, and as a result, the envelope’s band-
width can be estimated as ∆ωenv ≈ 2π/τ1. For simplicity, we
will consider the temporal duration of the electrical waveform
within each period to coincide with the temporal period itself

(for instance, this is the case of a sinusoidal waveform), i.e.,
∆t0 ≈ Tm. Introducing these two approximations into (10), we
finally derive the condition

τ1 � NTm. (11)

Inequality (11) implies that the temporal duration of the
stretched optical pulse at the output of the first dispersive line
must be much larger than N times the period of the electrical
waveform to be imaged. In the following sections, the design
constraints imposed by the derived conditions for frequency
upshifting of periodic and quasi-periodic electrical waveforms
will be analyzed in detail.

B. Design Specifications for Frequency Upshifting
of Periodic Microwave Waveforms

The main design equation for the frequency upshifting of
periodic microwave waveforms is the so-called general self-
imaging or Talbot condition, i.e., (9). In principle, according
to this equation, the output dispersion in the system can be
made arbitrarily large. This is associated with the fact that
there is a free parameter (N) in (9) that can be fixed at the
designer convenience, i.e., the output dispersion can be made
larger by simply fixing a higher value for the free parameter
N . In this way, the system’s input dispersion [which is directly
proportional to the output dispersion for a prescribed time
magnification factor; see (4)] can also be made arbitrarily large,
and as a result, the temporal aperture of the system τ1 ≈
|β̈1L1|∆ωopt can be fixed as long as desired, independently of
the input (and output) electrical bandwidth in the system. Thus,
the two key performance parameters in the system, namely
1) time aperture; and 2) electrical bandwidth, can be freely
optimized as independent parameters, and as a result, the un-
desired time–bandwidth tradeoff of the conventional approach
can be overcome.

A second design constraint in the system is that given by
inequality (11). In reality, condition (11) ensures that the de-
viations induced by the finite temporal envelope as compared
with the ideal case keep within safe bounds [11]. According
to condition (11), fixing a higher value of N requires a longer
temporal aperture, which is fully consistent with the tendency
imposed by the self-imaging condition in (9) (see discussions
above).

Inequality (11), in combination with the self-imaging con-
dition (9), however, imposes a constraint on the maximum
electrical bandwidth that can be achieved at the output of the
system. To be more concrete, assuming that the system is
configured to obtain a very high temporal compression, i.e.,
|Mt| � 1(|β̈2L2| ≈ |β̈1L1|), the system temporal aperture can
be approximated by

τ1 ≈ |β̈2L2|∆ωopt ≈ N
T 2

m

2π
|Mt|∆ωopt (12)

where we have made use of the self-imaging condition in (9).
Introducing (12) into inequality (11), we have

Tm

2π
|Mt|∆ωopt � 1. (13)
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In the case of a sinusoidal waveform, inequality (13) re-
duces to a simple condition for the output electrical bandwidth
∆ωout ≈ ∆ωin/|Mt| = 2π/(Tm|Mt|), and in particular

∆ωout � ∆ωopt. (14)

In general, condition (14) means that the maximum electrical
bandwidth that can be achieved with the proposed frequency
upshifting system is only limited by the input optical band-
width (without any additional constraint on the system’s tem-
poral aperture); specifically, the maximum achievable electrical
bandwidth must be much narrower than the input optical band-
width. Thus, electrical (microwave) frequencies up to a few
hundreds of gigahertz could be easily obtained with the pro-
posed technique using pulsed optical sources providing optical
bandwidths in the terahertz range. Such optical sources are
readily available in different platforms, including optical fiber.
One should also keep in mind that in practice, the achievable
electrical bandwidth may be limited by the PD bandwidth.
Commercially available PDs are limited to bandwidths of about
60 GHz. PD technologies able to handle bandwidths above
300 GHz have been recently reported [14].

It is also worth mentioning that in the analysis presented
above, ideal first-order dispersive fibers have been assumed.
However, the presence of higher order dispersion terms, and in
particular, second-order dispersion terms, may also represent
a source of distortion in the analyzed system. The influence
of second-order dispersion on the performance of a Talbot-
based microwave frequency upshifting system is numerically
investigated in Section IV.

C. Design Specifications for Frequency Upshifting of
Quasi-Periodic Microwave Waveforms

A problem of relevance from a practical viewpoint is that of
frequency upshifting of a periodic microwave waveform modu-
lated by a slow amplitude and/or phase temporal envelope. This
includes cases of amplitude-modulated and phase-modulated
sinusoidal waveforms, e.g., Vin(t) = A(t) cos(ωmt + ϕ(t)).
The problem is identical to the one analyzed above but in which
the input signal exhibits an additional AM/PM. Again, the
system must be designed to satisfy the self-imaging condition in
(9), as well as to minimize the temporal aberrations induced by
the finite-duration amplitude/phase temporal envelope affecting
the ideal periodic waveform. Thus, inequality (10) must be
also satisfied. Assuming that the amplitude/phase modulation in
the electrical waveform is much faster than the slow Gaussian
temporal envelope imposed onto the electrical waveform by
the stretched optical pulse, i.e., ∆ωmod � 2π/τ1 (∆ωmod

is the bandwidth of the amplitude/phase modulation), then
the bandwidth of the temporal envelope that affects the ideal
periodic waveform is essentially determined by the modulation
bandwidth, i.e., ∆ωenv ≈ ∆ωmod . Equation (10) can thus be
rewritten as

∆ωmod � ωm

N
(15)

where we have used that ∆t0 ≈ Tm (sinusoidal waveform).
Inequality (15) is a condition for the modulation speed, which

must be at least N times slower than the repetition frequency
of the input signal. Thus, general self-imaging can also be
exploited for the frequency upshifting of amplitude/phase mod-
ulated sinusoidal waveforms, but it should be emphasized that
this approach can be used for imaging only sufficiently slow
temporal modulations. In fact, there is an important tradeoff be-
tween the system temporal aperture and the modulation speed;
in particular, a longer temporal aperture (higher N ) necessarily
implies a slower temporal modulation. This is a fundamental
limitation in the design of the proposed systems for frequency
upshifting of amplitude/phase modulated waveforms.

IV. NUMERICAL ANALYSIS OF THE TALBOT-BASED

MICROWAVE FREQUENCY UPSHIFTING APPROACH

A. Design Specifications and Bandwidth Constraints

Our theoretical predictions were confirmed by numerical
simulations. As an example, the results of one of our simu-
lated systems are summarized in Fig. 2. Specifically, in this
system, the input and output dispersions were fixed to β̈1L1 =
+2000 ps2 and β̈2L2 = −1600 ps2, respectively, to achieve
a temporal magnification factor of Mt = 1/5 (i.e., temporal
compression by a factor of 5). Assuming an input optical
bandwidth of ∆ωopt/2π ≈ 1 THz (estimated total bandwidth
in our simulations), the temporal aperture at the input of
the system is τ1 ≈ 12 ns. The input microwave signal in the
presented simulations was an amplitude-normalized periodic
train of triangular waveforms, each one with a time duration
of ∆t0 = 75 ps. The system output was evaluated for differ-
ent input repetition frequencies (ranging from fm ≈ 4 GHz
to fm ≈ 11 GHz). In order to illustrate the process of for-
mation of compressed temporal self-images of the input mi-
crowave waveform, the cross-correlation coefficient between
the normalized output and input microwave waveforms (after
proper temporal re-scaling) was calculated for different input
repetition frequencies, covering the aforementioned range. This
cross-correlation coefficient provides an estimate of the de-
gree of recurrence or similarity between the output microwave
waveform and the temporally scaled version (by 1/Mt = 5)
of the input microwave waveform, and in particular, it was
computed as

C =

∫ +∞
−∞ Vin(t/Mt)Vout(t)dt√∫ +∞

−∞ V 2
in(t/Mt)dt

∫ +∞
−∞ V 2

out(t)dt
(16)

where 1) the function Vout(t) is background free and normal-
ized in amplitude, and 2) the two functions Vin(t/Mt) and
Vout(t) are temporally synchronized before the computation of
this coefficient. Notice that the coefficient C can vary from
0 to 1, and 1 is reached only if Vout(t) = Vin(t/Mt). As
expected, it is observed that the cross-correlation coefficient is
maximized (i.e., the output electrical waveform is a compressed
replica of the input waveform) for repetition frequencies that
satisfy the self-imaging condition in (9) for any given integer
N . As anticipated, very high frequencies can be processed
using a large value of N without affecting the system’s temporal
aperture. The insets in Fig. 2 show the simulated input and
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Fig. 2. Results from numerical simulations of a microwave frequency upshifting system, with the parameters given in the text. Cross-correlation coefficient
between the output microwave waveform and the temporally compressed replica (by a compression factor of 1/Mt = 5) of the input microwave waveform
(periodic train of triangular signals) evaluated for different input repetition frequencies. Insets show the input and output temporal waveforms for two different
input repetition frequencies, namely 1) for fm = 9.9736 GHz, which satisfies the self-imaging condition, and 2) for fm = 9.6182 GHz, which is outside
self-imaging conditions.

output temporal waveforms (background-free, normalized
waveforms) for two different input repetition frequencies,
namely, for fm = 9.9736 GHz, which satisfies the self-imaging
condition with N = 5, and for fm = 9.6182 GHz, which satis-
fies (9) with a noninteger N (N = 4.65). As shown in this latter
example, a significant distortion can be induced in the output
waveform if the self-imaging condition is not satisfied.

It has been previously shown that the electrical power trans-
fer function (dispersion-induced power penalty versus RF fre-
quency) of a time-stretched system (or simplified TI system,
in general) can be described by a curve that resembles the
cross-correlation function in Fig. 2 [8], [10]. The dispersion-
induced power penalty function in a time-stretched system is
in turn qualitatively similar to that in a conventional RF fiber-
optic link [8], [10]. The electrical power transfer function in an
RF fiber-optic link (or in a simplified TI system) is calculated
for RF tones of different frequencies, and one should keep in
mind that in reality, an RF tone is just a particular case of
periodic microwave waveforms. In this way, the well-known
dispersion-induced power penalty curve in an RF fiber-optic
link can be directly related to the temporal Talbot effect in
dispersive media. This interpretation is indeed in very good
agreement with the conventional one, in which the power
penalty curve in an RF fiber link is explained as a result
of the dispersion-induced constructive/destructive interference
between the carrier–sideband beat terms related to the two
sidebands of the modulated signal [10]. The temporal Talbot
effect can be similarly explained as a result of dispersion-
induced interference between the discrete spectral components
of the propagating periodic waveform [15]. In other words, our
analysis here reveals that the well-known dispersion-induced
power penalty curve in an RF fiber-optic link (and in particular,
in a simplified TI system) is not restricted to microwave tones
but a similar behavior is also obtained for any given arbitrary
periodic microwave waveform (where the repetition frequency
of the periodic signal plays the role of the RF tone frequency).

Fig. 3. Results from numerical simulations of the same microwave frequency
upshifting system as in Fig. 2. Cross-correlation coefficient between the output
microwave waveform and the temporally compressed replica of the input mi-
crowave waveform (periodic train of triangular signals) evaluated for different
input (output) microwave bandwidths. Bandwidth was varied by changing the
time width of the individual triangular pulses. Input repetition frequency was
fixed to fm = 4.4603 GHz, which satisfies the self-imaging condition with
N = 1.

In fact, our proposal for microwave frequency upshifting is
based on exploiting this general power-penalty feature of a
simplified TI system.

In Fig. 3, the cross-correlation coefficient between the output
waveform and the temporally compressed replica of the input
waveform was evaluated for different input (output) microwave
bandwidths. The evaluated system was identical to that simu-
lated in Fig. 2, and in particular, in these present simulations,
the repetition frequency of the input microwave signal (train
of triangular pulses) was fixed to fm = 4.4603 GHz, which
satisfies the self-imaging condition in (9) with N = 1. The
bandwidth of this input signal was varied by changing the time
width of the individual triangular pulses in the sequence. The
bandwidth is calculated as half the width of the main lobe of
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the spectrum of each triangular pulse (i.e., ∆ωin = 2/∆t0,
where ∆t0 is the time width of each individual triangular
pulse). In our simulations, the input microwave bandwidth
was varied from 10 to 100 GHz, corresponding to an output
microwave bandwidth variation from 50 to 500 GHz (the band-
width is assumed to increase from the input to the output by
exactly the time compression factor of 1/Mt = 5). As expected,
the deviation between the output waveform and the ideally
compressed replica of the input waveform is more significant
for a broader input (output) bandwidth. The negative slope
of the obtained cross-correlation curve becomes notably more
pronounced for output bandwidths broader than ≈ 200 GHz.
This behavior is in good agreement with the above theoretical
predictions regarding the system’s microwave bandwidth con-
straints, and in particular, with (14) (we remind the reader that
the total optical bandwidth in our simulations was ≈ 1 THz).

B. Second-Order Dispersion Effects

The influence of second-order dispersion terms in dispersive
fibers on system performance was also numerically investi-
gated. For this purpose, the cross-correlation coefficient be-
tween the output waveform and the compressed input waveform
was used again. As a general rule of thumb, we expect that
the influence of higher order dispersions can be neglected if
the dispersive fibers are shorter than the second-order disper-
sion length LD corresponding to the input optical bandwidth,
i.e., LD ≈ δt3opt/|

...

β0|, where δtopt = 2π/∆ωopt, and
...

β0 is
the second-order dispersion coefficient of the corresponding
fiber (at the operation optical wavelength). Based on these
preliminary predictions, the cross-correlation coefficients were
calculated as a function of a second-order dispersion normal-
ized with respect to the second-order dispersion length (for the
used optical bandwidth); in particular, the normalized second-
order dispersion was defined as |

...

β0 |L/|
...

β0|LD ≈ |
...

β0|L/δt3opt.
In our simulated system, δtopt ≈ 1 ps. The input repetition
frequency was fixed again to achieve self-imaging with N = 1,
i.e., fm = 4.4603 GHz. The cross-correlation curves in Fig. 4
were calculated assuming an output microwave bandwidth of
100 GHz (input microwave bandwidth of 20 GHz or time
width of each triangular pulse of 100 ps). Different cases were
considered: 1) An identical second-order dispersion coefficient
is introduced by the two dispersive lines in the system (solid
curve); 2) second-order dispersion is only present in one of the
two dispersive lines, namely, the input dispersive line (dashed
curve) or the output dispersive line (dotted curve); and 3) the
two dispersive lines introduce a second-order dispersion with
the same magnitude but opposite signs (dashed-dotted curve).
Fig. 4 shows that the presence of second-order dispersion in any
of the two dispersive fibers will affect the system performance
in a very similar fashion (compare dashed and dotted curves). In
fact, as shown by the solid curve, when second-order dispersion
is present in the two fibers, its effect is additive so that a higher
deviation is induced in the output waveform (assuming that the
second-order dispersion coefficients in the two fibers are of the
same sign). In any case, Fig. 4 shows that as expected, the effect
of second-order dispersion is only significant for fiber sec-
tions longer than the so-called second-order dispersion length

Fig. 4. Results from numerical simulations of the same microwave frequency
upshifting system as in Fig. 3 but assuming the presence of second-order
dispersions: Cross-correlation coefficient as a function of the normalized
second-order dispersion term (see definition in the text), assuming that 1) an
identical second-order dispersion coefficient is introduced by the two dispersive
lines in the system (solid curve); 2) second-order dispersion is only present
in one of the two dispersive lines, namely, the input dispersive line (dashed
curve) or the output dispersive line (dotted curve); and 3) two dispersive lines
introduce a second-order dispersion with the same magnitude but opposite
signs (dashed-dotted curve). In these simulations, the input repetition fre-
quency and output microwave bandwidth were fixed to fm = 4.4603 GHz and
∆νout = 100 GHz, respectively.

Fig. 5. Results from numerical simulations of the same microwave frequency
upshifting system as in Fig. 4. Cross-correlation coefficient as a function of the
normalized second-order dispersion term (see definition in the text), evaluated
for different output microwave bandwidths, namely, 50 GHz (dotted curve),
100 GHz (solid curve), and 200 GHz (dashed curve). The input repetition
frequency was fixed to fm = 4.4603 GHz.

(for the input optical bandwidth). Another interesting finding
is that the second-order dispersion effects can be compensated
by using dispersive fibers with second-order dispersions of
opposite signs; in particular, Fig. 4 shows that the second-order
dispersion-induced distortion can be almost completely can-
celled out if the two dispersive fibers introduce a second-order
dispersion coefficient of the same magnitude but opposite sign
(see dashed-dotted curve), even for fiber sections significantly
longer than the characteristic second-order dispersion length.

Fig. 5 presents the cross-correlation curve evaluated as a
function of the normalized second-order dispersion (assuming
as the worst case the presence of second-order dispersion of
the same sign in the two fibers) and for different input (out-
put) microwave bandwidths. In particular, the cross-correlation
curve was calculated for an output bandwidth of 50 GHz (dotted
curve), 100 GHz (solid curve, same as in Fig. 4), and 200 GHz
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(dashed curve). Fig. 5 shows that the second-order dispersion-
induced distortion in the output waveform depends on the
bandwidth of the synthesized signal, and in particular, a more
significant distortion is observed when a broader bandwidth is
synthesized. In other words, the microwave frequency upshift-
ing system is more robust to second-order dispersion when used
to synthesize a waveform with a narrower bandwidth.

As a general conclusion, we emphasize that the second-order
dispersion-induced distortion can be minimized by ensuring
that the used fiber sections are shorter than (or of the order
of) the second-order dispersion length for the used optical
bandwidth. Assuming an optical bandwidth of a few tera-
hertz and a conventional SMF-28 fiber (|

...

β0| ≈ 0.1 ps3/km, at
1550 nm), this condition limits the fiber length to a few kilome-
ters, which in turn may notably constraint the design flexibility
provided by the system to achieve a large time–bandwidth
product. However, in practice, the two dispersive lines in the
system are typically implemented using a section of conven-
tional fiber, SMF-28 (negative first-order dispersion), and a
section of dispersion-compensating fiber (DCF, positive first-
order dispersion) [1], [7]. The second-order dispersion terms
in these two fibers are generally of opposite sign, thus making
this conventional configuration more robust to second-order
dispersion effects (the second-order dispersion effects in this
case will be at least partially compensated; see the results in
Fig. 4). If ultrabroadband operation over very large temporal
apertures is desired, customized dispersive elements with re-
duced higher order dispersion coefficients could be used instead
of conventional optical fibers. An attractive solution is that
of chirped fiber Bragg gratings, which can be designed to
almost completely remove higher order dispersion terms over
very broad bandwidths [15], [16]. As an additional advantage,
chirped fiber Bragg gratings can provide very high dispersions
in significantly more compact forms than conventional optical
fibers.

V. PROOF-OF-CONCEPT EXPERIMENTS

A. Frequency Upshifting of Microwave Tones

Experiments demonstrating frequency upshifting of mi-
crowave tones based on temporal self-imaging were reported
in [7]. For completeness, we describe here in detail the main
results of these experiments.

Fig. 6 shows a schematic of our experimental setup. An
erbium-doped fiber ring laser (EDFRL) was used as the opti-
cal pulse source. The passive mode locking of the laser was
achieved through nonlinear polarization rotation in a unidi-
rectional ring resonator [17]. This source was operated at a
wavelength of around 1550 nm and generated ≈ 1-ps optical
pulses (full-width at half-maximum (FWHM) optical band-
width ≈ 720 GHz, corresponding to a total bandwidth of
≈ 1.9 THz). The pulse repetition rate was set to 10 MHz by
carefully adjusting the laser resonator length using a tunable
delay line. Part of the laser radiation was coupled out by an
optical coupler (C1), and after detection by PD1 and proper RF
amplification (RFA), it was used as the synchronization signal
(Synch.) in the RF synthesizer (Synth.) and as the triggering

Fig. 6. Experimental setup with the notation given in the text.

(Trigg.) signal in the sampling oscilloscope (Oscill.). The fiber
laser pulses were coupled out by a second optical coupler
(C2) and subsequently stretched by the first dispersive stage
(DCF, providing a total dispersion of β̈1L1 = +2153 ps2) to
a time width of ≈ 9 ns (system’s temporal aperture). After
suitable polarization control with an optical polarizer (Pol.),
the stretched pulses were temporally modulated in intensity
by the amplified sinusoidal microwave voltage from the RF
synthesizer using a Mach–Zehnder EO modulator (Modul.).
The optical signal after modulation was temporally compressed
using a second dispersive stage (conventional telecommunica-
tion fiber SMF-28). In our first set of experiments, SMF-28
introduced a dispersion of β̈2L2 = −1722 ps2. According to
(4), this dispersion should provide a temporal magnification of
Mt = 0.2, i.e., microwave frequency upshifting by 1/Mt = 5.
The microwave signal at the output of the second dispersive
stage was extracted using a high-speed PD2 (bandwidth of
50 GHz) and measured with a sampling oscilloscope (band-
width of 50 GHz).

Fig. 7 shows the measured signals at the output of the
second dispersive stage (output of the system) when the
frequency fm of the input tone was fixed at different val-
ues (always around 10 GHz) to satisfy (9) with N varying
from 4 to 6 in increments of 0.5. Specifically, the input
frequencies were fixed to (a) fm = 8.600 GHz (N = 4);
(b) fm = 9.120 GHz (N = 4.5); (c) fm = 9.610 GHz
(N = 5); (d) fm = 10.080 GHz (N = 5.5); and (e) fm =
10.530 GHz (N = 6). As shown by the results in Fig. 7, a
nearly ideal frequency upshifting process is always achieved
when the self-imaging condition in (9) is satisfied with N
being an exact integer. This is the case in Fig. 7 (a), (c), and
(e). In these cases, our system provided a focused temporal
replica of the original tone compressed by a factor of ap-
proximately 1/Mt = 5, i.e., the desired microwave frequency
upshifting by a factor of ≈ 5 was achieved. In particular, the
frequencies of the output tones (as estimated from Fourier
analysis of the experimental curves) were (a) ≈ 42.820 GHz,
(c) ≈ 47.874 GHz, and (e) ≈ 52.046 GHz (frequency upshifting
by 4.979, 4.982, and 4.943, respectively), and the correspond-
ing cross-correlation coefficients C between the measured input
and output waveforms [as defined in (16)] were estimated as
(a) 0.95, (c) 0.95, and (e) 0.93. As expected for an experi-
mental realization, the estimated cross-correlation coefficients
from measurements are slightly lower than those theoretically
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Fig. 7. Measured microwave signals at the output of the microwave frequency
upshifting system (compression factor of 1/Mt = 5) for input RF tones of
different frequencies (fm around 10 GHz).

predicted (see Fig. 2). When N was not an integer, the ampli-
tude of the output signal decreased drastically; see, for instance,
the results in Fig. 7(b) and (d), in which the microwave signals
were practically filtered out by the TI system and essentially
only noise was received at the output. The cross-correlation
coefficients could not be easily estimated in these two cases
since it is not evident to establish an objective criterion for tem-
porally synchronizing the measured noisy output waveforms
and the input tones (as required for the calculation of these
coefficients). Nonetheless, the presented results clearly show
that the simplified TI system used in our experiments would be
unable to generate frequencies as high as those demonstrated
here (around 50 GHz) unless the system is designed and con-
figured to exploit the temporal self-imaging effect.

To further illustrate the capabilities of the proposed mi-
crowave frequency upshifting approach, we conducted a series
of experiments to obtain radiation at frequencies well above
100 GHz. Fig. 8 shows the measured temporal signals at the
input (top plot) and at the output (bottom) of the second dis-
persive stage (SMF-28) when the input frequency was fixed to
fm = 39.870 GHz to satisfy (9) with N = 86. The bandwidth
of our time-domain measurement system (PD2 + oscilloscope)
was now insufficient to capture the output temporal waveform,
and as a result, the signals in these experiments were measured
using an optical autocorrelator (Autoc. in Fig. 6). In the results
shown in Fig. 8, the output signal exhibited a frequency of
fout ≈ 199.35 GHz (determined by Fourier analysis), i.e., the
predicted frequency upshifting by 5 was achieved. Specifically,

Fig. 8. Autocorrelation traces corresponding to the optical signals measured
(a) before and (b) after the second dispersive stage in the microwave frequency
upshifting system when the system is configured for achieving a compression
factor of 1/Mt = 5 with fm = 39.870 GHz.

Fig. 9. Autocorrelation traces corresponding to the optical signals measured
(a) before and (b) after the second dispersive stage in the microwave frequency
upshifting system when the system is configured for achieving a compression
factor of 1/Mt = 8.85 with fm = 40 GHz.

we estimated a cross-correlation coefficient between the mea-
sured input and output autocorrelation traces of ≈ 0.89. A
larger frequency upshifting factor was finally achieved using
a longer section of SMF-28 fiber at the second dispersive stage
(total dispersion of β̈2L2 = −1910 ps2). According to (4), this
system should provide a microwave frequency upshifting by
1/Mt = 8.85. Fig. 9 shows the measured temporal signals at
the input (top plot) and at the output (bottom) of the second
dispersive stage (SMF-28) when the input frequency was fixed
to fm = 40 GHz to satisfy (9) with N = 170. The output
signal exhibited a frequency of 354.04 GHz (determined by
Fourier analysis), thus demonstrating the expected frequency
upshifting by exactly 8.85. In this case, we estimated a cross-
correlation coefficient between the measured input and output
autocorrelation traces of ≈ 0.94. Again, the cross-correlation
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coefficients between the measured input and output waveforms
in this last set of experiments are slightly lower than those
theoretically expected (see Fig. 3). In particular, the observed
distortions in the measured temporal waveforms in Figs. 8 and 9
are in part associated with the instabilities in the autocorrelation
measurement system.

For comparison, the reader can easily prove from (7) that if
the temporal Talbot effect had not been exploited, the maxi-
mum achievable frequency (using the same configuration and
parameters as in our examples here) would have been limited
to ≈ 10–15 GHz. This again shows the drastically superior
performance that can be achieved by properly exploiting the
temporal Talbot effect in a microwave frequency upshifting
system.

VI. SUMMARY AND CONCLUSION

In conclusion, a fiber-based microwave frequency upshifting
technique for broadband AWG has been analyzed in detail. This
study follows previously reported experimental results on this
technique. In a microwave frequency upshifting scheme, a low-
frequency arbitrary microwave signal is temporally compressed
into a high-frequency replica using a simple and practical fiber-
based system. The focus of our paper is on the so-called
Talbot-based approach, in which the microwave signal to be
frequency upshifted is a (quasi-)periodic temporal waveform.
This includes nonmodulated or slowly (amplitude and/or phase)
modulated microwave tones, or in general, any given arbitrary
periodic waveform. The design specifications of a Talbot-based
microwave frequency upshifting system have been derived
and the practical capabilities and limitations of these systems
have been investigated both analytically and numerically. Our
theoretical findings and numerical simulations are in very
good agreement. The results reported here show the superior
performance associated with the use of the temporal Talbot
effect in a microwave frequency upshifting system and have
also allowed us to clearly establish the actual capabilities and
constraints of this approach for broadband AWG. Specifically, it
has been shown that electrical (microwave) frequencies up to a
few hundreds of gigahertz over nanosecond temporal windows
can be easily obtained with the proposed technique using pulsed
optical sources providing optical bandwidths in the terahertz
range. In practice, the achievable electrical bandwidth may be
limited by the output PD bandwidth. A numerical analysis of
the influence of higher order effects, in particular second-order
dispersions in the fibers, has also been conducted. This analysis
reveals the need for minimizing the second-order dispersion
terms in the used fibers to avoid a significant distortion in the
synthesized waveforms. The influence of second-order disper-
sion is especially detrimental for synthesizing ultrabroadband
waveforms. Simple design rules have been given to avoid these
detrimental effects in a practical system.

APPENDIX

In the analysis of the system in Fig. 1, we assume an ultra-
short Gaussian input optical pulse. After propagation through
the first dispersive fiber (total dispersion β̈1L1), this pulse is
temporally broadened and chirped. In particular, assuming that

the input dispersion is sufficiently high, the complex envelope
of the pulse at the fiber output can be expressed as

u
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with τ1 ≈ β̈1L1∆ωopt, where ∆ωopt is the input optical band-
width. We note again that in our analysis the time delays
introduced by the different elements in the system (i.e., dis-
persions and EO modulator) are not considered. The chirped
pulse is then intensity modulated in an EO modulator (e.g.,
Mach–Zehnder intensity modulator) by the input electrical
(microwave) signal Vin(t). Assuming that the modulation depth
is sufficiently small to ensure linear modulation operation,
the optical signal at the output of the EO modulator can be
written as
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where V ′(t) = exp(−[t/τ1]2)[1 + aVin(t)]. This optical signal
is dispersed again in a second dispersive fiber providing a
total dispersion β̈2L2. The temporal waveform after dispersion
can be calculated as u(t, L1 + L2) = u(t, L+

1 ) ∗ h2(t), where
the asterisk denotes convolution, and h2(t) is the temporal
impulse response of the fiber dispersive medium h2(t) ∝
exp(jt2/(2β̈2L2)). The convolution operation can be devel-
oped as
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where 1/α = (1/β̈1L1) + (1/β̈2L2). The last integral in (A3)
can be solved by considering the term exp(−jtτ/β̈2L2) as the
kernel of a Fourier integral
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where the symbol � holds for Fourier transform. Using the
product–convolution property of the Fourier integral, we obtain
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where Ṽ ′(ω) = �{V ′(τ)} and ∆Ω is the total spectral band-
width of V ′(t) [Ṽ ′(ω)]. If this bandwidth is sufficiently narrow
so that

|α|∆Ω2

8
� π (A6)

then the phase term exp(−jαΩ2/2) in the integral of (A5) can
be neglected and results in
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Introducing (A7) into (A4), we obtain
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Introducing the result from (A8) into (A3), we finally derive
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The signal received at the output of the PD Vout(t) is
proportional to the average intensity of this optical signal and
results in

Vout(t) ∝ |u(t, L1 + L2)|2 ∝
∣∣∣∣V ′
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It should be mentioned that a similar expression to that
in (A11) has been obtained for temporal stretching systems
assuming an ideal electrical tone (sinusoidal waveform) as the
input electrical signal [2]. Our analysis here is more general and
valid for any given arbitrary input electrical waveform.
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