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Delay Lines With Tailored High-Dispersion Orders
for Periodic Optical Pulses

Naum K. Berger, Boris Levit, and Baruch Fischer

Abstract—We derive an expression for the temporal fractional
Talbot effect in delay lines with arbitrary orders of dispersion. We
then demonstrate, experimentally and by numerical simulations,
that a simple device consisting of a number of uniform fiber Bragg
gratings or of waveguides can serve for such a tailored dispersive
delay line for periodic optical pulses. The device produces tempo-
rally delayed and phase-shifted replicas of the original pulses, sim-
ilarly to what happens in dispersive delay lines in the fractional
Talbot effect. Such devices can be useful for compensation for the
nonquadratic spectral phase of diode lasers, of dispersive elements
in systems used for temporal imaging, real-time spectral analysis,
and periodic pulse generation.

Index Terms—Bragg grating control, dispersive delay line, fiber
Bragg grating, high-order dispersion, periodic optical pulses,
temporal Talbot effect.

I. INTRODUCTION

LL-FIBER devices used for chromatic dispersion compen-
sation, such as chirped fiber Bragg gratings [1], are usually
suitable both for periodic and aperiodic optical pulses. However,
for applications in periodic pulses only, such devices can sub-
stantially be simplified. An interesting realization of a delay line
for periodic pulses with all-pass optical filters was previously
discussed in [2]. A more recent study [3] demonstrated the im-
plementation of dispersive delay lines for periodic pulses with
purely quadratic spectral phase response based on M uniform
fiber Bragg gratings, or M waveguides with a 1 x M splitter
and M X 1 combiner. For instance, four uniform fiber Bragg
gratings, each of 0.2-mm length, with a spacing of 4 mm pro-
vided the same first-order dispersion for periodic pulses with
a repetition rate of 6.25 GHz as approximately 50 km of stan-
dard telecommunication fiber [3]. The action of the gratings or
the waveguides is based on the temporal fractional Talbot effect
[4], [3]: the propagation of a periodic optical pulse train in a
first-order dispersive medium of certain lengths (namely, frac-
tional Talbot lengths) is equivalent to the summation of tempo-
rally delayed and phase-shifted replicas of an input pulse train.
The function of the Bragg gratings or waveguides is to produce
such replicas with the needed temporal delays and phase shifts.
It was pointed out in [5] that the integer temporal Talbot ef-
fect operates not only for first-order dispersion but also for arbi-
trary dispersion orders. In this letter, we show that also the frac-
tional temporal Talbot effect is extendable to dispersive delay
lines with arbitrary orders. We derive the appropriate equations
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and demonstrate their use for devices, which are equivalent to
dispersive delay lines with arbitrary orders for periodic optical
pulses. Finally, we present numerical simulations and experi-
mental results that show good agreement and confirm the pro-
posed idea.

II. DESCRIPTION OF PRINCIPLE

For a dispersive delay line with a specific dispersion order
s — 1, the spectral phase response is

osr = —(1/8!)BsLrwy,

where [ is the dispersion coefficient, L is the length of the delay
line, 7 is the pulse harmonic order, w,, = 27 f,,,, and f,, is the
pulse repetition rate. For line lengths that are multiples of the
Talbot length

zp = 2ms!/(|Bs|wp,)

the spectral phase of each harmonic is a multiple of 27, and the
output pulses have the same temporal profile as the input pulse
train. This is the integer temporal Talbot effect. For the fractional
Talbot effect, the delay line length is a fractional of the Talbot
length

zjr = (m/p)zr

where m and p are integers with no common factor. The field
amplitude of the pulses at the line output can be obtained in
the same form as in [3] for the conventional temporal fractional
Talbot effect in first-order dispersive delay lines (s = 2)

p—1
E(t,mzr/p) = ZC(mm./p)E(t—nT/p,O) (1
n=0

but with Talbot coefficients C'(n,m, p) depending now on the
order s

p—1

C(n,m,p) = (1/p) > _ exp{(2imq/p)

q=0

x[n —mq® sgn(B:)]} (2)

where F(t,0) is the input field amplitude of the pulses, T
is the pulse period, and sgn denotes signum function. The
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derivation of (1) and (2) is similar to that obtained in [6] for
the spatial fractional Talbot effect. It can be seen from (1) that
for line lengths L = mzr/p the output pulse field is a sum
of the input pulse train replicas, each weighted by the factor
|C(n, m, p)|, temporally delayed by nT'/p and phase shifted by
on = arg[C(n,m,p)] (n is the number of the pulse replica).
Devices that would be designed to produce the same number
of the pulse train replicas with the same temporal delays and
phase shifts as given previously will be completely equivalent
to dispersive delay lines with s — 1 dispersion order and of
length . = mzr/p for periodic pulses with a given repetition
rate.

It should be mentioned that for the conventional fractional
Talbot effect (s = 2), the nonzero coefficients C(n,m,p) have
the same absolute values for fixed p. This implies that all of the
pulse train replicas have the same intensities and this property
is used for pulse repetition rate multiplication [4]. According
to (2), for arbitrary s these coefficients may be equal only in
particular cases, for specific values of p and s.

III. NUMERICAL SIMULATIONS

For the simulations (and the experiment), we chose the fol-
lowing parameters: s = 3,m = 1,p = 4, f,, = 6.25 GHz.
Note that for the conventional fractional Talbot effect (s = 2)),
the number M of the nonzero replicas is equal to p for odd p
or to p/2 for even p [6]. For instance, for p = 4, one needs
two replicas. In contrast, for s = 3 and p = 4 the number of
the replicas, according to (2), is four. This implies that we de-
sign a device consisting of four fiber Bragg gratings (or waveg-
uides) which is equivalent to a dispersive delay line with dis-
persion |33|L = 3/(872 f3 ). We assumed that the reflection of
each grating is low, such that the multiple reflections between
the gratings can be neglected. The spectrum of each grating was
assumed to be much wider than the bandwidth of the reflected
pulses and can be considered as constant. The distance between
the adjacent gratings ought to provide 7'/4 delay between the
reflected replicas. It follows from (2) that the amplitudes of all
replicas (and accordingly the grating reflectivities) are equal and
their phases are: @1 = @3 = @4 = 0,2 = 7 (for B3 < 0).
It is clear that such characteristics ought to be provided by ap-
propriate reflectivities and reflection phases of the fiber Bragg
gratings.

The calculated amplitude and phase response of the four fiber
Bragg gratings are shown in Fig. 1(a) and (b) (dashed curves),
respectively. For comparison, the same calculated characteristic
of an equivalent second-order dispersive delay line are also pre-
sented in these figures (by solid curves). It can be seen that the
curves intersect at frequencies corresponding to the pulse har-
monics rw,, (r = 0,+1,+2...). These points are shown by the
circles.

To compare with the experiment, we also calculated prop-
agation of periodic optical pulses through an equivalent
second-order dispersive delay line. As input pulses, we took
sinusoidally phase-modulated cw laser light with modulation
frequency of 6.25 GHz and modulation index of 1.6 rad. The
calculated output pulses are shown in Fig. 2 (dashed curve).
The calculation of the reflection from the four fiber Bragg
gratings gave, of course, exactly the same result.
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Fig. 1. Calculated (a) amplitude and (b) phase response of four fiber Bragg
gratings (dashed curve) with proper temporal delays and phase shifts and of
equivalent second-order dispersive delay line (solid curve).
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Fig. 2. Measured pulses (solid curve) produced by reflection from four fiber
Bragg grating system and calculated intensity (dashed curve) and phase (dotted
curve) of pulses obtained by using equivalent second-order dispersive delay line.

IV. EXPERIMENTAL RESULTS

The fiber Bragg gratings were fabricated by UV laser radia-
tion (with a wavelength A = 244 nm) through a phase mask.
The gratings, each with a length of 0.25 mm, were spaced by an
interval of 4.2 mm. The reflectivity magnitude (1%) and the re-
flection phase of each grating were controlled by a method sim-
ilar to that described in [7]. The reflection spectrum of the grat-
ings and its fast Fourier transform (FFT) were measured during
the fabrication process. The FFT for four written gratings is pre-
sented in Fig. 3. The reflection spectrum of the gratings can be
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Fig. 3. FFT of measured reflection spectrum of four written fiber Bragg grat-
ings.
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Fig. 4. Measured spectral reflectivity of four fiber Bragg gratings.

considered as spectral interference between the reflections from
the gratings. Therefore, the inverse FFT of the central band in
Fig. 3 is equal to the sum of the reflection spectra of all written
gratings. The last sideband corresponds to the interference be-
tween the reflections from the first and fourth gratings, and the
argument of its inverse FFT gives the phase shift between them.
By monitoring the FFT during the writing process, we were able
to measure and correct the reflectivity and the reflection phase of
each grating. The second sideband that corresponds to the sum
of the interference between the first and third, second and fourth
gratings is missing in the figure. Its location would be between
the first and the last sideband in Fig. 3, but it is almost equal to
zero because of the relationship between the grating reflection
phases. It indicates good quality of the fabricated gratings, as
also evident from the comparison between the measured spec-
tral response, presented in Fig. 4, and the calculation shown in
Fig. 1(a). The resolution of the grating phase measurement is
limited by the minimal sampling interval of the optical spec-
trum analyzer. This resolution varied from 0.05 to 0.15 rad for
the gratings closest to and farthest from the fiber end, respec-
tively. Our estimations show that for obtaining a needed grating
spectrum, the phase measurement error ought to be less than
0.1 rad.
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In the experiment, sinusoidally phase-modulated light of a cw
laser diode (A = 1541.77 nm) with modulation frequency of
6.25 GHz and modulation index of 1.6 rad was reflected from the
four written fiber Bragg gratings. (The experimental setup is the
same as that used in our previous work [8].) The obtained pulses
are shown in Fig. 2 (solid curve). We can see in this figure that
the measured pulse shape is very close to the intensity shape of
the calculated pulses (dashed curve), obtained for transmission
trough an equivalent second-order dispersive delay line. Fig. 2
also shows the calculated phase of these pulses (dotted curve).
It is interesting to note that the pulse intensity has a doubled
repetition rate.

V. CONCLUSION

‘We have demonstrated experimentally and by numerical sim-
ulations that for periodic optical pulses, dispersive delay lines
of arbitrary orders can be implemented using simple devices
consisting of a number of uniform fiber Bragg gratings or of
waveguides, providing proper phase shifts and temporal delays.
It is interesting to note that it is easier to obtain, in this way,
high dispersion values rather than low dispersions that would
require a larger number of gratings (or channels, in a waveguide
method). Indeed, the array-waveguide methods that were devel-
oped for photonics planar technologies in glasses and semicon-
ductors can allow the fabrication of a few hundreds of channels.
It would also be advantageous that the number of active chan-
nels, their phase shift, and attenuation can be tuned electrically,
providing programmable control of the order and the value of
dispersion.

The proposed devices can be useful for many applications,
such as for compensation of nonquadratic spectral chirp of
mode-locked laser diodes, for compensation and tailoring non-
quadratic spectral phases of dispersive elements in systems for
temporal imaging, real-time spectral analysis, and generation
of periodic optical pulses.
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