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Localization of light in a random-grating array
in a single-mode fiber
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We investigate light propagation in randomly spaced fiber gratings in a single-mode fiber and demonstrate the
localization effect. Localization of light in random media resembles that of electrons in disordered solids, re-
sulting from a subtle wave-interference formation. We measured the light transmission after each additional
grating fabrication and found an exponential decay that follows the localization theory. Important features of
the random array are its similarity to ordered gratings in the transmission and its reflection behavior at the
long-array regime. Besides the basic interest in localization in one-dimensional systems, random-grating ar-
rays have potential applications, utilizing the possibility of the fabrication of long structures with strong and
broadband reflections. © 2005 Optical Society of America

OCIS codes: 050.0050, 060.2310, 030.6600, 290.4210, 350.5500, 030.0030.
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. INTRODUCTION
ave propagation in random media has been an impor-

ant research topic throughout the years, gaining much
ttention when the concept of localization appeared and
timulated a large amount of work. The idea of localiza-
ion was first raised by Anderson1 for electrons in disor-
ered solids that were drastically affected by quantum
echanical wave interference.2,3 The quest to study and

ealize such effects in optics was natural, and indeed a
onsiderable amount of research can be found on light
ropagation in random media that include aspects of lo-
alization. Using light, in lieu of electrons, for the study of
ocalization adds new possibilities, mainly in the experi-

ental aspects, owing to the relatively easy measuring
echniques and the direct access to the optical ”wave func-
ion” via light-intensity measurement.

Properties of wave propagation in random media, in-
luding localization, generally depend on the system di-
ensionality. The theoretical analysis of a one-

imensional (1D) system is obviously easier than it is for
igher dimensions, but is not at all trivial for experimen-
al realizations in solid-state physics. In optics, however,
he experimental situation is very different, and 1D wave
ropagation is simple. There have been many papers on
ocalization aspects with electromagnetic waves in the
ptical4–9 and the microwave10,11 regimes. We point out
he work by Berry and Klein4, which is very relevant to
ur present study. These authors showed in a simple but
emarkable experiment that for a stack of N transparent
lates with randomly varying thicknesses the transmit-
ed intensity decays exponentially with N. The striking
eature of the random optical elements is that their over-
ll transmissivity �N is given by a simple multiplication of
he single-element transmissivity �, i.e., � =�N. This
N

0740-3224/05/122542-11/$15.00 © 2
eans that only the direct transmission counts, whereas
ny multiple reflections added in the direction of the
ransmitted light interfere destructively. We also mention
ur work on two experimental realizations for localization
f light in optical kicked rotors, which resemble the quan-
um kicked rotor that relates to Anderson localization. In
he first case12,13 we demonstrated localization in the spa-
ial frequency domain of free-space light beam propaga-
ion through an array of thin sinusoidal phase gratings.
n the second case14–16 we studied the spectrum (or side-
ands) localization of light pulses that are repeatedly
kicked” by a sinusoidal rf modulation along a fiber.

In this paper we present an experimental study of 1D
ocalization by means of light propagation in a random
ragg-grating array fabricated into a single-mode fiber.
e demonstrate the localization behavior, manifested in

he strong exponential decay of the light transmission
long the fiber, that was measured directly after the fab-
ication of each additional grating. This decay, which re-
ults in high reflection, should not be confused with the
uch-smaller fiber loss. A report on this finding was given

arlier.17 The theoretical analysis of such system is based
n the transfer-matrix formalism in which the system is
epresented by a product of random matrices. The
symptotic behavior of such a product results from a theo-
em on products of random matrices by Furstenberg.18

his theorem ensures that under very general conditions,
he elements of the matrix product and any norm of the
atrix product grow exponentially with the same expo-
ent, giving rise to the localization behavior. We refer the
eader to a comprehensive analysis for a 1D disordered
ystem given by Pendry.3 Besides the basic propagation
ffects in the random array, the study can have important
amifications on fiber-optic communication and gratings
005 Optical Society of America
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echnology. Examples are strong and broadband reflectors
nd fiber and random lasers.

The scattering elements in our system are the random
ratings in single-mode fibers. Fibers are an ideal experi-
ental medium for 1D light propagation with a matured

echnology of in-fiber grating fabrication. The gratings
ere made to be almost identical, with the same and rela-

ively large reflection-wavelength bandwidth of a few na-
ometers, obtained by fabricating short gratings. There-
ore the interesting effects concerning the localization
ccur within that bandwidth. Gratings are very effective
cattering elements such that we could observe the local-
zation effect with a relatively small number of them,
bout 50 gratings. The randomness of the scattering ele-
ents enters by the random spacing between the gratings

see Fig. 1).
The outline of the paper chapters is as follows: We first

ive in Section 2 a theoretical treatment of the wave
ropagation in randomly spaced gratings. We then com-
are the wave-theory result for the light transmissivity to
he calculation obtained from the ray theory and also to
he wave propagation in an ordered fiber grating. Section

describes the experiment, starting with the setup and
he grating-fabrication system and then presents the ex-
erimental results. We show transmission measure-
ents, the spectra, and the transmissivity as a function of

he gratings number for the random fiber system. These
urves are the central results of the paper, showing the
ocalization effect in the random-grating array. We then
ompare the measured results with the theory and find a
ery good agreement. We end the paper with conclusions
nd remarks on the application sides.

. THEORETICAL ANALYSIS OF LIGHT
RANSMISSIVITY IN A 1D
ANDOM-GRATING ARRAY
e present a theoretical treatment for wave propagation

n a single-mode fiber with N randomly-spaced Bragg
ratings and calculate the transmission in the limit of N
1 to obtain the localization length. This result readily

eveals that the interference among all reflected waves is
estructive for the transmission, and an intuitive expla-
ation is presented. We then compare this analysis with
ay theory, in which light is treated as lacking phase
roperty, to show that contrary to the exact wave calcula-
ion, this theory results in transmission that decays as
/N. Finally, we calculate the transmission of an ordered
ystem and compare the decay rates in both cases.

. Disordered Grating Array
transmission calculation through a disordered chain of

ratings can be carried out by transfer matrices

Fig. 1. Random fiber-grating array.
ethods.11 The basic idea underlying such a calculation
ssumes that the system can be cut into slices, where-
pon each can be easily evaluated. Then, by writing the
ransfer matrix of the complete system as a product of
hose matrices, we can apply the Furstenberg theorem18

o obtain the asymptotic behavior of the product.
The grating system is described in Fig. 1. Light with

ave number k propagates along a single-mode fiber hav-
ng an array of successive randomly spaced gratings. It
an be assumed that the space widths di are drawn inde-
endently from the density distribution function d��di�,
nd that the gratings are identical, i.e., that they have the
ame lengths and refractive indices.

We describe the propagation of the light in the 1D me-
ium by the transfer matrix Mi that relates the ampli-
udes of the forward- and backward-propagating waves
n the right side of each optical element to those on the
eft side (see Fig. 2):

�an
+

an
−� = Mn�an−1

+

an−1
−�. �1�

or optical lossless elements that are invariant under
ime reversal, the scattering matrix (which relates the
mplitudes of the ingoing waves to those of the outgoing
aves via reflections and transmissions) is unitary. Then,
y denoting the amplitude reflection and transmission co-
fficients from both sides, for instance from the left rn , tn
nd from the right r�n and t�n, we have the relations
�ntn

* +rn
*t�n

* =0 and �rn�2+ �tn�2= �r�n�2+ �t�n�2=1, (the aster-
sk stands for complex conjugate), and the transfer matrix
s given by4,19

mn =�
1

tn
* −

rn
*

tn
*

−
ri

tn

1

tn

� . �2�

he transfer matrices are unimodular �det mn=1�. In our
ystem we define each element as being comprised of one
rating and its successive space. The gratings are taken
o be identical, and the spacing between them is respon-
ible for the random part. The transfer matrix of such an
lement is the product of the grating transfer matrix and
he space transfer matrix. From a coupled-wave equation
f the counterpropagating waves, the transfer matrix for
single grating is given by20

ig. 2. Incident and reflected field amplitudes that define the
ransfer matrix of a single grating.
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mg =�cosh�SL0� − i
��

S
sinh�SL0� − i

�

S
sinh�SL0�

i
�

S
sinh�SL0� cosh�SL� + i

��

S
sinh�SL0�� , �3�
T
u

here L0 is the single-grating length, � is the coupling co-
fficient between the counterpropagating beams in the
ratings, ��=�−� /� is the wave-number deviation from
he Bragg wavelength, � is the grating period, and S
����2−��2�1/2. The transfer matrix for a space of length
is given by
i

r
t
o
e

w

d
F
m
fi
a

w
s

T
t
i
m
a
i
t
a

mdi
= �exp�ikdi� 0

0 exp�− ikdi�
� . �4�

hen the transfer matrix for a single element is the prod-
ct of the two above matrices,
mi = mgmdi
= ��cosh�SL0� − i

��

S
sinh�SL0��exp�ikdi� − i

�

S
sinh�SL0�exp�− ikdi�

i
�

S
sinh�SL0�exp�ikdi� �cosh�SŁ0� + i

��

S
sinh�SL0��exp�− ikdi�	 , �5�
nd the single-element transmission and reflection coeffi-
ients are given by

ti = 
mi�22 = �cosh�SL0� − i
��

S
sinh�SL0��−1

exp�ikdi�,

�6�

ri = − 
mi�11/
mi�22 = � exp�ikdi�sinh�SL0�/
iS cosh�SL0�

− �� sinh�SL0��. �7�

i=kdi provides the random nature of the system when
e have a set of such elements. It is assumed that the

pace widths di, are drawn independently from a density
istribution function d��	i�. The transfer matrix for N
ratings and N spaces is:

MN = m1m2 . . . mN =�
1

TN
* −

RN
*

TN
*

−
RN

TN

1

TN

� . �8�

N and RN are the amplitude transmission and the reflec-
ion coefficients, respectively, for the entire system. All co-
fficients as well as the transfer matrix of the complete
ptical array are denoted in this paper by capital letters:
,R ,M, compared with t ,r ,m, for one element. For the
se below we also denote the intensity transmissivity and
eflectivity for a single grating by �= �t�2, t,,,,=� exp�
�,
nd �= �r�2; and for the array of N gratings: �N= �TN�2 and
N= �RN�2.

We next evaluate the product of those N random uni-
odular matrices of Eq. (8) to obtain the overall system

ransmission. The asymptotic behavior of MN can be ob-
ained using the Furstenberg theorem18 on the product of
andom matrices, stating that under very general condi-
ions, the elements of the matrix product and any normal
f the matrix product grow exponentially with the same
xponent:

1

N
log�mN . . . m1u� → log�m�	�u

u
�d��	�dv�
�  �, �9�

here

v

� =� v

�	��
d
�	�

d

d��	� �10�

efines the probability distribution of u, and 
=arg�u�.
or the transfer matrix given in Eq. (2), and in fact for
ore a general case, Furstenberg’s conditions are satis-
ed, as shown by Matsuda and Ishii.21 Then from Refs. (9)
nd (10) the exponent is given by

lim
N→

1

N
ln �N = − ln�1/��, �11�

here � is the transmission of a single grating and the
ystem overall transmission is

�N = exp
− N ln�1/��� = �N. �12�

his simple result reveals an interesting property of the
ransmission through a set of randomly spaced scatterers
n a 1D system by showing that it includes only from the

ultiplication of the single gratings transmission without
ll multiple reflections. Of course, reflections were taken
nto consideration in the above calculation, but asymp-
otically the result teaches us that all multiple reflections
re canceled.
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. Numerical Simulation for a Disordered Grating
rray

n the previous subsection we obtained the transmissivity
or a large number of disordered gratings and found it to
ecay exponentially with the number of gratings. Here we
ompare this analytical result with a numerical simula-
ion of the transmission. Figures 3 and 4 depict the trans-
itted intensity spectrum after 1000 and 5000 gratings,

espectively. The gratings were taken to be identical and
ave the following properties: centered at 1540 nm and
ave a coupling coefficient �=185 m−1, and a length L
0.385 mm. The transmissivity for a single grating at the
and center is 0.022 dB. The distances between two suc-
essive gratings were chosen randomly from the interval
0–1� mm. The figures also present the transmission
pectrum given by Eq. (12), with the wavelength depen-
ent transmission � of a single grating having the same
arameters as those given above. In both cases, a very
ood agreement was obtained between the analytical cal-
ulation and the numerical simulation. The smoother na-
ure of the longer array is obvious, as the averaging ac-
ion over many gratings is more uniformly spread. One
an view the array output spectrum as being composed of
ll grating pairs making many random Fabry–Perot eta-
ons. The output is the collective spectra, which gradually
ose their individual Fabry–Perot characteristic as the
ight passes more gratings. Figure 5 shows the evolution
f the transmitted intensity at the band center after each
rating. Here, too, the good agreement between the ana-
ytical calculation and the numerical simulation is well
bserved.

. Destructive Interference of the High-Order Reflections
t is possible to consider the total transmission as an in-
nite sum of waves formed by multiple reflections and
ransmissions consisting of different optical paths and
ifferent phases. Figure 6 is an example of a system built
ut of six randomly spaced gratings. The figure exempli-
es three waves with exactly the same overall path length
ut with a different number of transmissions and reflec-
ions. Nevertheless, owing to the phase difference be-
ween the reflection coefficient of the forward- and
ackward-propagating waves, the two upper waves inter-
ere constructively; however, the third wave interferes de-
tructively with the upper two. The fascinating result of

ig. 6. Three waves with paths of the same length but different
umbers of reflections, resulting in constructive interference be-
ween the two upper waves but destructive interference with the
hird.
ig. 3. (Color online) Transmission-spectrum simulation of 1000
andomly spaced gratings with a single-grating transmissivity of
.022 dB at the band center. The continuous curve shows the
ig. 4. (Color online) Transmission-spectrum simulation of 5000
andomly spaced gratings with a single-grating transmissivity of
.022 dB at the band center. The continuous curve shows the
ig. 5. (Color online) Transmissivity at the band center after
ach grating. Simulation and the asymptotic behavior (the
traight line) given by the theory for a single-grating transmis-
ivity of 0.022 dB.
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he localization theory is that for large arrays the overall
nterference of the all multireflections in the transmitted
ight is fully destructive. Therefore the total transmission
omprises only the wave that passes through all elements
ithout being reflected.
The phase difference between the reflection coefficients

or opposite wave incidence at an optical element is gen-
ral. We are familiar with the opposite sign of the reflec-
ion coefficients for opposite incident waves at a boundary
f two media with different refractive indices. More gen-
rally, the phase difference can be tracked in the relation
entioned in Subsection 2.A that r�ntn

* +rn
*t�n

* =0. For
hese optical elements �rn�= �r�n�, tn= t�n and for specific
hoice of the reference planes of the waves at the two
ides of the element, arg�tn�=arg�t�n�=0, and then we ob-
ain rn=−r�n.

. Ray Theory for a Disordered System
e show here the simple ray theory approach that could

ave been expected to be adequate for the disordered sys-
em but in fact leads to wrong results. The development
ollows the work by Berry and Klein4 given here to clarify
he basic wave nature responsible for the localization ef-
ect. Ray-theory approach is based on the assumption
hat the waves in a disordered system are incoherent and
herefore can be represented as intensities rather than
mplitudes. The appropriate matrix formalism can be ob-
ained for the ray theory, referring to incident and re-
ected intensities. When � and � are the one-element in-
ensity reflectivity and transmissivity, where for lossless
catterers �+�=1, the one-element transfer matrix is

m =�� −
�2

�

�

�

−
�

�

1

�
� , �13�

nd for N successive elements

mN =�� −
�2

�

�

�

−
�

�

1

�
�

N

= �I +
�

�
�− 1 1

− 1 1
��N

= I + N
�

�
�− 1 1

− 1 1
� .

�14�

is the unit matrix, and the last equality is based on
−1 1
−1 1

�N=0 for N�2. Therefore the ray-theory transmissiv-
ty for N random gratings is

�N = m22
−1 =

�

� + N�1 − ��
. �15�

t is a linear decay, or Ohmic like behavior for �1/TN�
N (for large N), which is fundamentally different from

he exponential dependence results from localization
heory. Figure 7 graphically shows the transmissivity in
he two approaches. The different result of the ray theory
hows the distinction in regarding waves as incoherent
nd averaging over random phases. This difference is ex-
mplified in Section 2 C; although propagating in a ran-
om medium, different light-wave paths of the same
engths “magically” give precise destructive interferences.
hus the assumption that the scattered waves have no
hase correlation, and therefore that they can be re-
arded as incoherent, is false. Furthermore, exact wave
veraging shows that all transmitted waves (except for
he one passing without any reflection) interfere destruc-
ively, leading to the exponential decay of the transmis-
ivity. It is also noteworthy that the ray theory does give a
orrect result when the wave interference is not domi-
ant. This can occur when the reflection is very small and
he system is small enough, so even small reflections
ould not accumulate.

. Comparison with Ordered Gratings
t is interesting to compare the random-grating system
ith ordered gratings. We have a powerful method for ob-

aining effectively long gratings, with easy creation of
andom structures that might have been regarded as a
etriment, but this turns out to be an advantage with the
upport of a localization effect that provides a strong
ransmission decay and high reflection. Then, not only are
he random-grating arrays easy to create, but distur-
ances do not have much of a deteriorating effect on their
erformance. On the other hand, long ordered gratings
re hard to create and can have a detrimental environ-
ental effect. The situation is even worse for ordered-

rating arrays, which are almost impossible to imple-
ent, even for a small number of gratings, since they
eed precise interferometric spacing between the grat-

ngs. An additional advantage of the random arrays is
hat they can easily provide very large bandwidths for the
eflection, since they depend on the single-grating band-
idth. The single grating can be made very short

10–100 �m long) and still be an effective scatterer, thus
roviding very large wavelength bandwidths of tens of na-
ometers. One can then argue that for even larger band-
idths, it is possible to form point scatterers rather then

hort gratings. Such random point-scatterer arrays are, of
ourse, interesting and worthy of implementation, though
hey are not easy to make. The array needs the fabrica-

ig. 7. (Color online) Comparison between wave and ray theo-
ies for the transmissivity in random gratings; the upper curve
epicts the Ohmic behavior of the ray theory, whereas the lower
urve depicts the exact wave averaging (both calculated for grat-
ng transmissivity of 0.022 dB).
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ion of many random scatterers along the fiber. To reach
he asymptotic noiseless localization regime, we need a
easonable number of scatterers. This means that the
trength of one scatterer ought to be weak to allow the
ight to penetrate and acquire many multireflections,
hich averages to zero in the transmitted light. On the
ther hand, the fabrication of many scatterers is more
omplicated, and therefore we need a reasonable scatter-
ng strength for each element in order for us to be able to
bserve the effect. There are also some disadvantages of
he random array. The transmission and the reflection
nd their spectra are not smooth and uniform, as the av-
raging in a random structure (which is limited in length)
s not optimal. We need a rather long array to reach the
moother asymptotic behavior. The last point in the
rdered–disordered gratings comparison is that gratings
re used mostly for precise filtering purposes and not only
or reflection, and thus the ordered element is needed, un-
ess we look for special filtering uses, or with special fin-
erprints.

For a comparison between the disordered array and the
rdered structures, like long uniform gratings, we assume
hem all to be of the same overall length L=NL0. We can
lso extend the comparison to ordered arrays of N grat-
ngs, each of length L0, with exactly the same spacing be-
ween them. We note that the latter structure is almost
mpossible to implement, even for low number of gratings,
ecause of the subwavelength-spacing requirement.
h
d

3
M
W
t
r
l
t
t

We use Eq. (3) for the transmissivity of long uniform
rating, replacing L0 with L, and then compare the out-
ome to the random-grating result. For the ordered-
rating array we can again start with the transfer-matrix
ormalism, using Eqs. (5) and (8) and setting equal spac-
ng, di=d. This structure includes the ordered-grating
ase for d=0. Then the transfer matrix for a set of N grat-
ngs is

MN = mN. �16�

N is given for a unimodular matrix by

MN = �m11UN−1�a� − UN−2�a� m12UN−1�a�

m21UN−1�a� m22UN−1�a� − UN−2�a�� ,

�17�

here UN are the Chebyshev polynomials of the second
ype,

UN�a� =
sin
�N + 1�cos−1 a�

�1 − a2
, �18�

nd
= 1

2 �m11+m22�=cosh SL cos kd+�� /S sinh SL sin kd.
hen
.

N

=
1

�1 − a2��cosh�SL� − i
��

S
sinh SL�exp�ikd� sin�Ncos−1a� − sin
�N − 1�cos−1 a�− i

�

S
sinh�SL�exp�ikd� sin�Ncos−1 a�

i
�

S
sinh�SL�exp�ikd� sin�Ncos−1 a��cosh�SL� + i

��

S
sinh SL�exp�ikd� sin�Ncos−1 a� − sin
�N − 1�cos−1a� 	

�19�

herefore the transmission coefficient is

TN = 
MN�22
−1 =

�1 − a2�1/2

�cosh SL + i
��

S
sinh SL�exp�ikd� sin
Ncos−1�a�� − sin
�N − 1�cos−1�a��

. �20�
or large N, in all cases (the disordered array, the ordered
rray with optimal spacing, and the single grating), the
ong grating regime �N�1� for the transmitted intensity
t the central wavelength ���=0� is given by

�N � exp�− NL0S� = �N. �21�

he exponent in the ordered case depends strongly on the
rating spacing selection. The strongest reflection is given
y the single long grating, which has a built-in equal-
pacing zero phase; regardless, such arrays are difficult to
mplement. The great surprise is the result for disordered
rrays that gives exponential dependence and accordingly
igh reflectivity, although it has its own drawbacks, as we
escribe in Section 3.

. EXPERIMENT: SYSTEM,
EASUREMENTS, AND RESULTS
e first describe the setup for the grating fabrication and

hen the system for measuring the transmission of the
andomly spaced gratings. The first setup includes a UV
aser that is used for grating fabrication, a set of lenses
hat are used to shape the laser beam, a mask to create
he grating pattern, a moving table and controller for fi-
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er placement, and a single-mode fiber. The second setup
s comprised of an erbium-doped fiber amplifier (EDFA)
hat is used as a source for the transmission measure-
ent and an optical spectrum analyzer for conducting the
easurements. We then present the measured results

hat include the transmission spectral behavior and the
ependence on the number of gratings. We also show
easurements for deducing the one grating transmissiv-

ty, needed for the theory verification. At the end of this
ection we discuss the results with a comparison with the
ocalization theory.

. Grating Fabrication and Measurement Setup
he method used to fabricate the gratings is based on a
ear-contact exposure through a phase mask.22 The setup

s illustrated in Fig. 8. The UV laser source is an argon–
on laser whose frequency is doubled by a nonlinear crys-
al to give a wavelength of 248 nm and power of approxi-
ately 200 mW. The beam is broadened by a concave lens

n order to produce a spot size large enough to illuminate
he slit on the mask as uniformly as possible without sig-
ificantly reducing the beam intensity. Then the beam is
ocused in the fiber axis by a cylindrical lens in order to
aximize the intensity, exposing the fiber. The beam

merging from the cylindrical lens is normally incident on
slit attached to the mask and transfers only 1 mm of the
eam (the slit is adjusted to pass the interval with the
aximum intensity). The slit and the mask are placed ap-

roximately at the focal point of the cylindrical lens to
chieve the maximum intensity on the fiber that is adja-
ent to the mask. The exposing beam is then normally in-
ident on the phase mask and diffracted entirely. The
rating is formed by the interference between the +1 and
1 diffracted orders of the phase mask. A single-mode fi-

ig. 8. (Color online) Experimental setup. The UV laser beam, a
pot size for the grating writing. The beam is then focused at the fi
phase-grating diffraction gives two first-order waves, causing a

urements in the fiber were done in situ after each additional gr
uildup with the grating number.
er was put inside a high-pressure hydrogen tank for a
ew days to make it sensitive to a photoinduced refractive
ndex change.

. Light Transmission Measurements
or reproducibility of the grating spectrum, it was neces-
ary to ensure that the exposure time would be similar for
ll gratings. Therefore the laser power was adjusted to
chieve a relatively slow grating formation time in order
o render good accuracy.

The following procedure was repeated for each grating:
The illumination was started.
After 1 min, the illumination was stopped and the

pectrum was recorded.
The automated stage controller was adjusted to move

he fiber holding stage a random distance that was larger
han the grating.

The above procedure was repeated 55 times.
It is noteworthy to mention that the maximum number

f 55 gratings was due to limitations of the spectrum-
nalyzer accuracy, as the transmitted light intensity de-
reased with the grating number. The measurement re-
ults of the spectrum as well as the intensity are shown in
igs. 9–12. The experiment was carried out twice for a
lightly different exposure time and a slightly different
rating length (by modifying the distance between the
ask and the fiber). The spectra in Figs. 9 and 11 show

he detailed wavelength dependence in the grating band-
idth and the gradual loss of the individual Fabry–Perot

pectrum along the propagation while acquiring the many
nd random Fabry–Perot characteristics.
The transmitted power measurements shown in Figs.

1 and 12 were done at the center of the grating spectrum

to a pinhole, is broadened by a lens in order to achieve a larger
es by a cylindrical lens to obtain maximum intensity on the fiber.
idal interfering pattern on the fiber. The light transmission mea-
fabrication. This procedure allowed us to follow the localization
ligned
ber ax
sinuso
ating
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and, where the transmission is minimal, and were aver-
ged over 0.5 nm in Experiment No. 1 and over 0.3 nm in
xperiment No. 2. The reason for this averaging stems

rom the need to overcome the random fluctuations and
he temperature and stress changes experienced by the fi-
er during the experiment, causing the measured spec-
rum to drift and vary. The averaging interval, on the one
and, was chosen to be large enough to suppress those en-
ironmental changes, but on the other hand, as the trans-
issivity magnitude varies with wavelength the interval
ad to be limited to a length at which the maximum dif-

erence in transmission could be tolerated. In more ex-
licit terms, if the grating minimum transmissivity is
0.4 dB, then an accuracy of 1 magnitude less is toler-

ble. Furthermore, the noise caused by the optical ampli-
er and the spectrum-analyzer accuracy results in a mea-
ured accuracy no better then 0.02 dB.

. Experiment versus Theory
ection 2 provided the theoretical asymptotic behavior of
he transmission with the exponential decay given by �N
exp
−N ln�1/���, where � is the intensity transmission
oefficient of a single grating. Therefore, in order to com-
are the theoretical results with the findings obtained
rom the experiments, it is necessary to first find � at the
oint in the spectrum where the transmission measure-
ents were taken. This single grating value is to be com-

Fig. 9. (Color online) Experiment 1. Transmitted spec
ared with the experimental decay rate of the complete
rating-array transmissivity.

Measurement of the transmissivity of a single grating
an be performed by one of two methods. The first and
ost straightforward method is to take the result

btained from measuring the spectrum of the first
rating and normalizing it according to the spectrum
easured for a grating-free fiber (which is basically the

ower spectrum of the EDFA). This method has a
reat disadvantage in that it features a wide inaccuracy
aused by a power drift that may occur between the two
easurements as a consequence of fiber bending,

olarization dependent loss, and an instability of the
ource power. Whereas the drift caused by these effects
s tolerable for most of the experiment when it is
uppressed to values of �0.1 dB by maintaining a
elatively constant temperature, a vibration-free environ-
ent, and a minimized fiber movement during the experi-
ent this is not the case when measuring the first

rating, as the minimum transmission is in mere tenths
f decibels. The second method is to measure the trans-
ission of two gratings, which is a form of Fabry–Perot,

nd extracting from it the transmissivity of a single grat-
ng. Although this method is less straightforward, it has a
reat advantage over the previous one in that all the ef-
ects causing the inaccuracy of the previous method are
egligible. This is because the measurement is performed

easured after (a) 3, (b) 10, (c) 25, and (d) 50 gratings.
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t a specific given time without necessitating measure-
ent of the reference level. To achieve good accuracy, the

econd method was selected. It is now possible to derive
he transmissivity of a single grating from the spectrum
easurement of two successive gratings. Although the
abry–Perot properties are simple and known, we derive
hem here by using the transfer-matrixmethod. The
ransfer matrix of two successive gratings with a spacing
between them is

M2 =�
1

t* −
r*

t*

−
r

t

1

t
��exp�ikd� 0

0 exp�ikd���
1

t* −
r*

t*

−
r

t

1

t
� ,

�22�

here t1 and r1 are the single-grating amplitude-
ransmission-reflection coefficients, respectively. The dis-
ance between the two gratings is d, and the propagated
eld wave number is k. Then, the intensity transmissivity
f the grating pair can be calculated from 1/T2= 
M2�22,
hich together with �= �t�2, �= �r�2, �= �t�2, �2= �T2�2 and �
�=1, 	=kd, gives the simple Fabry–Perot intensity

ransmissivity � =�2 / ��2+4� sin2 ��, where ��= �4��nd /�,

Fig. 10. (Color online) Experiment 2. Transmitted spec
2

is the refractive index and � is the wavelength. Obvi-
usly, it is difficult to extract � from the last expression, as
t requires knowledge of the transmission coefficient
hase and the exact distance between the gratings. How-
ver, we can easily find it from the minimum of �, as its
alue does not depend on the phase �min=�2 / �2−��2. Then
he transmission coefficient of a single grating can be
ritten as �=2�min

1/2 / �1+�min
1/2 �.

The grating pair measurements of the normalized
ransmission spectra are shown in Figs. 13 and 14 for the
rst two gratings from Experiments 1 and 2, respectively.
he value �min is the square root of the minimum trans-
issivity at the center of the grating spectrum; it is
1.63 dB for Experiment 1 and −1.41 dB for Experiment
. For Experiment 1, according to Eq. (22), the transmis-
ivity of a single grating is −0.43 dB; for Experiment 2, it
s −0.35 dB. According to the localization theory these val-
es are to be compared with the overall transmission
lopes that are a−0.405 dB/grating in Experiment 1 and a
0.326 dB/grating for Experiment 2.

. Loss
hroughout the study, it was assumed that loss is negli-
ible. This assumption should be confirmed experimen-
ally, since although the loss of the fiber itself for such

measured after (a) 3, (b) 10, (c) 25, and (d) 50 gratings.
trum
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hort distances is negligible, the process of grating fabri-
ation might introduce some additional loss in the grating
ormation with the exposure to the UV radiation that
hanges the fiber uniformity and the absorption coeffi-

ig. 11. (Color online) Experiment 1. Transmission measured at
he grating center wavelength (at minimum transmission). The
tted straight-line slope is −0.405 dB/grating.

ig. 12. (Color online) Experiment 2. Transmission measured at
he grating center wavelength (at minimum transmission). The
tted straight-line slope is −0.326 dB/grating.

ig. 13. (Color online) Experiment 1. The normalized power as
easured after two gratings is similar to the spectrum of a
abry–Perot resonator but with the envelope of the grating spec-
rum. The transmissivity of a single grating is obtained from the
atio between the maximum and the minimum transmission
ower, which in this experiment resulted in −0.43 dB.
ient. To confirm that the exponential decay did indeed re-
ult from localization and not from loss, the fiber loss was
easured after the grating fabrication. The experiment

etup is given in Fig. 15, where one end of the tested fiber
as connected to a spectrum analyzer through a 3 dB at-

enuator and a 50% coupler, and the other end to the
DFA through a 50% coupler. The intensity measured at

he coupler output tap was one-quarter of the reflection
rom the tested fiber plus one-quarter of the transmission.
o evaluate the loss, a measurement was made of the
pectrum at the coupler-output tap using a regular fiber
nd then repeated using the tested fiber. Assuming that a
egular fiber can be used as a reference for a loss-free fi-
er, the maximum measured difference between the spec-
rum of the regular fiber and that of the tested fiber was
ess then 0.5 dB for all wavelengths. As the total trans-

Table 1. Summary of Experiment Results

Experiment
No.

Transmissivity
of a Single

Grating
(dB)

Total
Transmissivity

Slope
(dB/grating)

1 −0.43 −0.405
2 −0.35 −0.326

ig. 14. (Color online) Experiment 2. The transmissivity of a
ingle grating is obtained from the ratio between the maximum
nd the minimum transmission power, which in this experiment
esulted in −0.35 dB.

ig. 15. (Color online) Experiment setup for fiber loss measure-
ent. Light reflected from the tested fiber is rerouted back to the

eft coupler. Half of the reflection is then present at the left tap of
he right coupler and is coupled to half of the transmission from
he tested fiber. The right tap of the right coupler is connected to
he spectrum analyzer and measures one-quarter of the reflec-
ion plus the transmission. The EDFA serves as the light source,
nd OSA is the optical spectrum analyzer.
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ission measured was �−20 dBm, it may be deduced
hat the fabricated-fiber loss is negligible.

. Experimental Conclusion
he overall results show a good agreement between the
xperimental results and the theory; see Table 1.

The slight difference between the transmission of a
ingle grating and the total transmission slope has four
auses. First, the gratings are not exactly equivalent, and
herefore the transmission of a single grating (as mea-
ured from the first two gratings) can deviate from the av-
rage transmission of the gratings. Second, the transmis-
ion slope is a consequence of a calculation that evaluates
he asymptotic behavior of the transmission. The trans-
issivity fluctuates in a finite system, deviating from the

symptotic calculation. Third, measurement uncertain-
ies exist, such as temperature, fiber stress, and
olarization-dependent loss. Finally, the stability of the
DFA plays a role.

. SUMMARY
e have presented a realization of Anderson localization
ith light propagating in one-dimensional randomly

paced gratings in a single mode fiber. We described the
heoretical analysis and experimentally demonstrated the
ocalization effect. We measured the transmissivity with
he exponential decay along the disordered fiber gratings.
he magnitude of the decay rate, i.e., the inverse localiza-
ion length, is equal to the log of the inverse single-
rating transmissivity. The total transmission is com-
rised of only the wave that passes through all gratings
ithout experiencing any reflections. All other transmit-

ed waves interfere destructively for the transmission. We
iscussed a ray approach that treats the waves as inco-
erent owing to an averaging over random phases in the
isordered array, but the approach fails to adequately de-
cribe the special wave-interference nature.

We conclude with the application sides of the random-
rating array. We refer to the reflection side, complemen-
ary to the transmission, that can become very large with
he strong localization effect. Ordered gratings with their
ltering and reflection capabilities are widely used in fi-
er optics. However, it is very difficult to fabricate grat-
ngs longer than a few centimeters. Random-grating ar-
ays are by far easier to make, with much larger lengths.
ere, the random nature becomes an advantage. How-

ver, even most important feature is that the random ar-
ay can easily provide very large bandwidth reflection,
ince it depends on the single-grating bandwidth that can
e made very short, thus providing very large wavelength
andwidths of tens of nanometers. Another interesting
ossibility is the use of the array for fiber lasers. The ran-
om grating can provide the pseudocavity for feedback,
hus providing a kind of 1D random laser.
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