
PRL 95, 013903 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JULY 2005
Critical Behavior of Light in Mode-Locked Lasers
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Light is shown to exhibit critical and tricritical behavior in passively mode-locked lasers with externally
injected pulses. It is a first and unique example of critical phenomena in a one-dimensional many-body
light-mode system. The phase diagrams consist of regimes with continuous wave, driven parapulses,
spontaneous pulses via mode condensation, and heterogeneous pulses, separated by phase transition lines
that terminate with critical or tricritical points. Enhanced non-Gaussian fluctuations and collective
dynamics are present at the critical and tricritical points, showing a mode system analog of the critical
opalescence phenomenon. The critical exponents are calculated and shown to comply with the mean field
theory, which is rigorous in the light system.
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Statistical light-mode dynamics (SLD) [1,2] that is
based on statistical mechanics provides a powerful ap-
proach for the study of complex nonlinear light systems,
while serving as a new statistical mechanics paradigm. It
was developed to treat and solve long-standing questions in
laser physics. A prime example is the laser pulsation
threshold, a phenomenon in passive mode locking that
attracted much attention [3]. Passive mode locking occurs
when a saturable absorber element is placed in the cavity,
driving the laser to generate extremely short light pulses.
The transition mechanism from a continuous wave (cw) to
pulsation of such lasers was shown via SLD [1,2] to be an
intrinsic property of the many interacting mode system,
ruled by the balance between the nonlinear interaction
induced by the saturable absorber and the randomizing
effect of noise. The theory, verified by experimental study,
demonstrated [4] the existence of first order phase transi-
tions between disordered (cw) and ordered (locked) mode
phases, as the noise (‘‘temperature’’) or the laser power
were varied. Thus noise alone stabilizes the cw state,
showing a noise induced phase transition [5]. Concepts
and ideas from phase transition theory and critical phe-
nomena have been used in laser physics, and particularly in
connection with modulation instability [6], but SLD is the
first many-body thermodynamic theory of laser dynamics
and mode locking.

In this Letter we report on findings of critical and tri-
critical phenomena in the many light-mode system. It is a
first example of such behavior with light that also provides
a physical realization of a strict one-dimensional many-
body system. For criticality to appear in the laser mode
system we add to it an external driving field which is an
analog of the external magnetic field in magnets and the
pressure in gas-liquid-solid systems [7]. It is achieved by
injecting the laser with pulses from an external source,
which in the simple case matches the repetition rate of the
laser. When the injection is weak, the ordering phase tran-
sition persists, shifted to higher ‘‘temperature,’’ with a
‘‘parapulses’’ phase (pulses driven by the injection). How-
ever, the phase transition line terminates in a critical point,
05=95(1)=013903(4)$23.00 01390
where the distinction between parapulses and spontaneous
pulses disappears, similar to the vapor-liquid critical point.
Thus, by increasing the injection, it is possible to obtain
mode locking smoothly from cw. Near the critical point the
system exhibits the familiar critical phenomena, including
divergence of response coefficients, characterized by uni-
versal critical exponents, and non-Gaussian critical fluctu-
ations, enhanced by a factor of N1=4, where N is the
number of active modes, compared to normal fluctuations.
The latter could mean a 2 orders of magnitude fluctuation
enhancement in practical systems. It is a light-mode system
analog of the critical opalescence phenomenon.

When the injection repetition rate is higher than that of
the laser, the high- and low-temperature phases are char-
acterized by equal and unequal pulse powers, respectively,
which cannot be smoothly connected. However, beyond a
threshold injection level the transition becomes continuous
rather than first order. The two phase transition lines meet
at a tricritical point, often found in systems with inter-
action competing with external driving [8], around which
tricritical behavior is observed, with its distinct set of
universal exponents, and tricritical fluctuations enhanced
by a factor of N1=3.

Pulse injection has practical uses [9], and here we find
additional aspects. For example, as in the vapor-liquid
case, field induced ‘‘condensation,’’ that is in our case
mode ordering and pulsation, can be sustained when the
field is removed even below the threshold pumping.

We perform our theoretical study in the framework of
the coarse-grained model of SLD, representing the cavity
electric field envelope  by a single variable in an interval
whose length is of the order of the pulse width. The
derivation of the model from the passive mode-locking
master equation [10] has been discussed before [1,2,4].

The dynamics of the field variable in interval number n
is expressible as
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m
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The ‘‘Hamiltonian’’ H with injection strength h is

H � �N Re
XN
m�1

�

2
j mj

4 � 2hm 
�
m

�
; (2)

where N � 1 is the number of active modes,  is the
coefficient of saturable absorption, and hn is the external
injection at site n. hn is assumed to take nonzero values
only at a small number n of intervals. g is the overall net
gain, which can be assumed without loss of generality [2]
to set the intracavity power k k2 � �nj nj2 to a fixed
value P, in which case g becomes a Lagrange multiplier
for the constraint. The random term 
, representing noise
from spontaneous emission and other sources, is modeled
by a (complex) Gaussian white noise with covariance
h
�

n�t�
m�t0�i � 2T�nm��t� t0�.
The invariant measure of Eq. (2) is a Gibbs equilibrium

distribution [1,11]

� � �
1

Z
e�H �=T��k k2 � P�; (3)

with the partition function

Z �
Z
d �d ��e�H �=T��k k2 � P�: (4)

As in previously studied cases of SLD [1,2,4], when
N � 1 the invariant measure is concentrated on configu-
rations where all but a finite number of the  variables are
O�N�1=2�. Here the intervals where  � O�1� are precisely
the n intervals which are subject to external injection. The
free energy F � �T logZ is then given by F �

Nmin 1;...; nfn� 1; . . . ;  n�, where

fn � �
Xn
m�1

�

2
j mj4 � 2Rehm �
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�

� T log
�
P�

Xn
m�1

j mj
2

�
: (5)

We establish Eq. (5) using the results of [2] for the partition
function Z0 for the h � 0 case,

Z0 �
Z
d2 eNj j

4�NT log�P�j j2��=T (6)

asymptotically for largeN. We can proceed immediately to
perform the integration in Eq. (4) over the N � n intervals
where h � 0

Z�
Z
d2 

Y
m

d2 m

� e�H� 1;...; n��Nj j
4�NT log�P��n

m�1j mj
2�j j2��=T: (7)

The exponent in the integrand in Eq. (7) is proportional to
the large parameter N, and therefore the integration is
concentrated near the global minimum of the integrand.
It is straightforward to verify that the minimum is always
obtained when  � 0, implying that F � Nminfn.
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Moments of the pulse strength can be obtained in the
standard manner by taking derivatives of the free energy.
Alternatively we may obtain directly the probability dis-
tribution function of the pulse amplitudes by integrating
out the N � n unforced variables in Eq. (3) getting

P � 1; . . . ;  n� � eNfn� 1;...; n�: (8)

The width of the distribution tends to zero in the thermo-
dynamic limit N ! 1, which shows that the pulse ampli-
tudes are thermodynamic observables.

We henceforth specialize to the case that all nonzero
injection values are of the same magnitude h that is appro-
priate for the injection of pulses from a source with a
repetition rate n times faster than that of the laser. For
the minimization problem there is no loss of generality in
assuming that the injection values are all real, since the
minimizing  values have the same phase as the corre-
sponding h values. By a simple rescaling of the variables
the free energy fn can be reduced to

f � �
Xn
m�1

�
1

2
x4m � hxm

�
�T log

�
1�

Xn
m�1

x2m

�
; (9)

where xm’s are real and positive. It follows from Eq. (9)
that thermodynamics depends on only two dimensionless
parameters, the reduced temperature T � T

P2 (the inverse
of the interaction strength [1]) and reduced driving h �
2h

P3=2 . The minimizers of f, �xm, are related to the expecta-

tion values (in the invariant measure) of the pulse powers
by �x2m � hj mj2i=P.

The study of thermodynamics and critical behavior is
now reduced to the analysis of the function f and its
minima. We note that for any values of the parameters,
minima can occur only at configurations where at least
n� 1 of the �xm’s are equal, with value �y, and the other
minimizer, which we denote by �x is greater than or equal
to �y. Accordingly, the free energy is obtained from

f�x; y� � �1
2x

4 � �n� 1�y4� � hx� �n� 1�y�

�T log1� x2 � �n� 1�y2�: (10)

It is instructive to consider the above results in k space
for the modes ak, the discrete Fourier transform of  n. The
Hamiltonian reads

H � �

2

X
j�k�l�m�0

aja�kala
�
m � 2Re

X
k

~hka�k; (11)

where ~hk takes a nonzero value for k being integer multi-
ples of n. Therefore, when n > 1, the set of modes consists
of two types, with and without the presence of the external
field. The Hamiltonian in Eq. (11) is analogous to the one
of an antiferromagnet placed in an external homogeneous
magnetic field [12], but with the roles of the interaction
term and the driving term reversed. Namely, the driving
acts on a subset of the modes, but the interaction tends to
align all modes in the same amplitude and phase. The
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FIG. 1 (color online). The phase diagram for n � 1 (homoge-
neous injection to all modes that matches the cavity repetition
rates). Upper figure: The lines give the first order phase transition
curve, which terminate at the critical points. The optical phase &
follows the phase of h. Lower figure: Pulse power vs T for
different values of external injection h.
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consequences of this competition are derived below. The
free energy can be expressed in the mode representation
using the mode amplitude expectation values hafi and haui
of those with (forced) and without (unforced) electric field,
respectively. The relations are x � 1

n �hafi � �n� 1�haui�
and y � 1

n �hafi � 1haui�, and the free energy is

f � �
1

2n3
hafi4 � �n� 1��n2 � 3n� 3�haui4

� 6�n� 1�hafi
2haui

2 � 4�n� 1��n� 2�hafihaui
3�

� hhafi �T log
�
1�

1

n
hafi2 �

n� 1

n
haui2

�
: (12)

For the analysis below we use the real space formula-
tion. We consider first the case of n � 1, where there is a
single pulse (the external field is applied on all modes), and
f [Eq. (10)] depends on the single variable x. For zero and
small values of h, f has a minimum x1 near zero and, for
small enough T , another minimum x2 > x1 below 1. For
such h there is a threshold temperature T 1�h� where
f�x1� � f�x2�. As T is decreased through this line �x jumps
from x1 to x2 in a first order phase transition. When h> 0,
the jump is between two pulse states, but the high-
temperature phase pulses are driven pulses whose power
decreases smoothly to zero when h ! 0. We term this
phase ‘‘parapulse’’ because of its resemblance to the para-
magnetic phase of magnets above the Curie point. For
sufficiently strong h, on the other hand, f always has a
single minimum �x between zero and one, which decreases
smoothly from one to zero as T is increased. Thus, the
coexistence line T 1�h� terminates at a critical point
�hc;T c�. The phase diagram is shown in the upper part
of Fig. 1.

The lower part of Fig. 1 shows �x as a function of T for
several h values. �x undergoes a jump for h< hc, and dis-
plays an infinite slope at the critical point—a manifesta-
tion of the critical divergence of the susceptibility. The
critical point itself is characterized by the vanishing of the
first three derivatives of f, which gives three polynomial
equations for the three unknowns �xc, hc, and T c. The
equations can be solved explicitly by radicals giving �xc �
0:53, hc � 0:20, and T c � 0:34.

One may define the usual critical exponents [7] #, ,
and � by � �x� �xc�jcoexistence � �T c �T �#, $ � @ �x=@h �

jT �T cj
�, and � �x� �xc�jT�T c

� �h � hc�
1=�. The ex-

ponents, as well as the nonuniversal amplitudes, can be
calculated by the standard procedure of expanding f up to
third order near the critical point [7], which yields the
classical mean field exponents #�1=2, �1, and ��3,
expectedly, since mean field theory applies to our system.

The fluctuation-dissipation relations naturally hold in
the laser mode system; it follows from Eq. (4) that

Var � � �
2

N
@h i
@h

�
2

N
$; (13)

that is, the critical exponent  also describes the diver-
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gence of pulse power fluctuations near the critical point. To
study the fluctuations at the critical point we turn back to
Eq. (8), which in the present context is a probability
distribution for the single pulse amplitude. Letting x �
P�1=2j j, the criticality condition implies that for T �
Tc, h � hc,

P �x� � eNa�x�xc�
4�O�x�xc�5�; (14)

where a is O�1�. The fluctuations distribution is non-
Gaussian, and the scale of the critical fluctuations is
O�N�1=4�, stronger by a factor of N1=4 than normal fluctu-
ations. The critical fluctuations are much larger than the
typical amplitude of the continuum background,O�N�1=2�.
It follows that the fluctuations of the continuum back-
ground are correlated, being the SLD analog of the critical
opalescence phenomenon.

The thermodynamics with n > 1 is qualitatively differ-
ent. The external injection encourages the formation of n
equal pulses, clashing with the tendency of the saturable
absorber to form a single strong pulse. As a result, the
phase diagram consists of an unequal pulse phase for weak
noise and weak injection, and an equal pulse phase for
strong noise or strong injection. As the two phases are
characterized by different symmetries, there can be no
smooth transition between them, and they are separated
by a phase transition line. However, the phase transition
may be continuous or first order, depending on whether the

transition order parameter q � �x� y�=
����������������
x2 � y2

p
is con-

tinuous or jumps to a nonzero value at the transition.
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FIG. 2 (color online). ( �x� �y) (left) and �x2 � �y2 (right) vs the
normalized temperature for different values of h for injection
repetition rate twice the laser repetition rate. The nature of the
phase transition changes at h � ht.
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FIG. 3 (color online). The h �T phase diagrams for repeti-
tion rate ratios n � 2 (left) and n � 20 (right). The bold line is a
first order phase transition curve. The dotted and dashed lines
form together the bifurcation curve T b�h�, of which the first is a
continuous phase transition line.
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We consider in detail the case n � 2 where both behav-
iors occur. It is more convenient to express f of Eq. (10) in
terms of q and p � x2 � y2

f�p; q� � �
p2

2
�1� 2q2 � q4� � h

�������������������������
2p

�
1�

q2

2

�s

�T log�1� p� (15)

to be minimized over p and q. The values of the minimiz-
ers �p and �q, giving their ‘‘thermal’’ averages vs T , are
given in Fig. 2. f is manifestly symmetric in q, since the
pulse amplitudes x and y play symmetric roles, from which
it follows that f is always stationary with respect to qwhen
q � 0. The condition @qf � 0 has another solution p3 �
h2

4 �q
2 � 1�2�2� q2�, and the global minimum of f is

reached in one of these configurations, the first correspond-
ing to equal and the second to unequal pulse mode locking.

Straightforward analysis shows that for large T the
function f has a single minimum at q � 0. For large h
this situation persists as T is lowered until at T � T b �
3
4 h2=3�2� h2=3� the minimum becomes a saddle and two
minima with nonzero q form; i.e., q undergoes a continu-
ous phase transition (see Fig. 3). For small h, however,
nonzero q minima appear for T >T b�h�, and at T 1�h�
exchange stability with the q � 0 minimum in a first order
phase transition, also shown in Fig. 3.

The intersection of the line of first order phase transition
T 1�h� and the line of continuous phase transition T b�h�

can be shown to occur at �T t; ht� � �3
3=2

16 ;
45
128�. �T t; ht� is a

tricritical point [8], with symmetric tricritical phenomena,
and the phase diagram Fig. 3 is quite similar to that of
metamagnets [12], where tricritical behavior is known to
occur. In particular, we may define tricritical exponents
such as #t and #2t associated with nonsymmetric (e.g., q)
and symmetric (e.g., p) fields, respectively, by q� �T t �
T �#t and p� pt � �T t �T �#2t near the tricritical point;
see Fig. 2. As before, the exponents take the classical
values #t � 1=4 and #2t � 1=2 [8]. Near the continuous
phase transition line there are ordinary critical phenomena,
for example, q� �T b �T �# and p� pb � �T b �T �#2 ,
where# � 1=2 and #2 � 1. At the tricritical point fluctua-
tions are enhanced by a factor N1=3.
01390
When the ratio of the repetition rates n is three or larger,
one can show that the transition between the equal and
unequal pulse phases is always first order; a typical phase
diagram is shown in the right panel of Fig. 3. Critical and
multicritical phenomena can be observed in these cases
under an external injection of unequal pulses.

The continuation of the phase transition line under ex-
ternal injection can be meaningful for lasers that can
remain metastably mode locked for an exponentially long
lifetime [4].
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