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Abstract. Passively mode-locked lasers are extended one-dimensional
dynamical systems subject to noise, with a nonlinear instability and a global
power constraint. We use the recent understanding of the importance of entropy
in these systems to study mode locking thermodynamically. We show that this
class of problems is solvable by a mean field-like theory, where the nonlinear pulse
free energy and entropic continuum free energy compete on the available power,
and calculate explicitly the pulse power and mode locking, which occurs when
the dimensionless scaled interaction strength γ = 9. A transfer matrix calculation
shows that the mean field theory is exact in the thermodynamic limit, where the
number of active laser modes tends to infinity.
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1. Introduction

Mode-locked lasers, which produce pulse trains of coherent light are an essential experimental
tool [1, 2], and serve at the same time as a fascinating paradigm of an extended nonlinear
dynamical system [3, 4]. The method of choice for generating ultrashort pulses is passive
mode locking, obtained by the action of a saturable absorber, where pulses as short as a few
femtoseconds, i.e., 1–2 light cycles, can be formed [5]. As such they have been the subject
of many theoretical works. Since the early works of the 1970s [6] mode-locking dynamics is
understood in terms of the ‘master equation’, which describes the temporal evolution of the
optical electric field envelope ψ.

However, it has been recently realized [7]–[10] that the purely dynamical approach to mode
locking is incomplete, and a full description of the physics of mode locking must take account of
the presence of noise in a statistical theory as a fundamental parameter. A clear demonstration of
this fact is the experimental observation that a threshold power is needed to reach mode locking,
a fact which is outside the scope of the dynamical theory. The effect of cavity noise has been
often considered before, e.g., in [11], in a perturbative manner. However, the stabilization of the
continuous wave (cw) configuration by noise is an entropic effect, which cannot be captured in
perturbation theory, and passive mode locking is a first-order phase transition.

The necessity of analysing noise nonperturbatively has led to the development of statistical
lightmode dynamics (SLD). The master equations of SLD, such as equation (1) below, are random
nonlinear partial differential equations. In this paper, we show that this equation is solvable by a
mean field-like theory in the thermodynamic limit, where the number of active modes tends to
infinity. The model is a prototype of a new class of solvable statistical physics systems with rich
thermodynamic behaviour. The unique feature of these systems is a destabilizing nonlinearity,
which saturates due to a global power constraint. The global constraint is an essential element
of SLD, necessary to ensure the existence of a well-defined steady state, in contrast with other
statistical physics systems with a global constraint [12]. Mode locking is a thermodynamic phase
transition to a configuration, where a macroscopic fraction of the available power is concentrated
in a microscopically narrow interval. This property, which is a consequence of the inherent
instability in the system, is the basic reason for the solvability of the SLD models, and also the
reason that nontrivial thermodynamics is exhibited by these one-dimensional systems.

Our previous theoretical studies of SLD [7, 9] used a simple case of the dynamical master
equation, assuming a band-limited waveform instead of a parabolic spectral filtering appropriate
for most laser systems. In [9], the exact mean field theory was developed and applied to the
simplified model, which may be viewed as a heuristic approximation for the more physical SLD
model, which is solved in this paper.

The aforementioned master equation is presented in section 2, and includes, in addition to
the saturable absorber and noise, the spectral filtering of the gain, group velocity dispersion and
Kerr nonlinearity. We study the equation under the soliton condition, an often-assumed relation
between the equation coefficients, where the invariant measure is a Gibbs distribution [7]. It
is shown that there are two natural independent length scales in the system, the pulse width
and the correlation length, and that the thermodynamic limit is reached when the cavity length
is much larger than one of the microscopic length scales. It follows that the thermodynamics
is determined solely by the dimensionless parameter γ , four times the ratio of the correlation
length to the pulse width. An important corollary of this result is a scaling relation: the intracavity
power needed to maintain mode locking grows as the inverse of the cavity length, when length is
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decreased while other physical parameters are held fixed. In section 3, the mean field theory of
SLD is developed and applied to an exact and explicit calculation of the free energy. Using the
expression for the free energy, we calculate all thermodynamic quantities of interest, including
the pulse power as a function of γ , and the thermodynamic phase diagram, which consists of one
ordered, mode-locked phase for large γ , and one disordered, non-mode-locked phase for small γ .
Coexistence occurs precisely at γ = 9, which is the threshold value beyond which passive mode
locking may be spontaneously achieved. As a first-order phase transition, passive mode locking
is accompanied by metastable states, and the metastable lifetimes are exponentially large in the
number of degrees of freedom [13]. For this reason, the instability threshold is as important as
the coexistence point. It is shown that the mode-locked state becomes unstable when γ � 8.
The cw state, on the other hand, is always metastable, which goes a step towards resolving the
self-starting problem [14]. The questions of metastable state lifetimes and self-starting dynamics
are beyond the scope of this paper, and are dealt with in forthcoming publications [15]. Finally,
in section 4, the mean field arguments are substantiated by a rigorous transfer matrix calculation,
which affirms the expression for the free energy derived in section 3.

2. The statistical steady state of passively mode-locked lasers

The temporal evolution of the complex envelope of the electric field ψ(x, t) in a cavity of length
L is governed by the master equation [7, 17],

∂tψ = (γg + iγd)∂
2
xψ + (γs + iγk)|ψ|2ψ + gψ + η. (1)

The master equation is usually formulated [20] in terms of two time scales, a short scale describing
the temportal waveform of ψ and a long scale describing the evolution of the waveform, at
a reference point in the cavity between consecutive passes. This approach has complicated
boundary conditions involving the two time variables. The traditional applications of the master
equation concentrated on the pulse waveform, which occupies only a small fraction of the cavity,
and the boundary conditions could therefore be sidestepped. In SLD, on the other hand, we
need to consider the full waveform, which includes both the pulse and continuum background.
The present formulation overcomes this difficulty by sampling, as in [6], the waveform every
roundtrip time, recording its spatial rather than its temporal form. In this formulation, simple
periodic boundary conditions in space can be imposed. Since the derivation of the master equation
relies on the assumption that ψ does not significantly change during a cavity roundtrip time or
its fraction, the spatial waveform is related to the temporal one by a factor of the group velocity
vg at their argument. The real constants γg > 0, γd , γs > 0, γk, characterizing spectral filtering,
group velocity dispersion, saturable absorption, and Kerr nonlinearity, respectively, as defined
through equation (1) are straightforwardly obtained from the usual definitions [17] modified by
appropriate factors of the roundtrip time and vg.

Noise of spontaneous emission and other sources is modelled in equation (1) by the
random term η, which is a (complex) Gaussian process with covariance 〈η∗(x, t)η(x′, t′)〉 =
2TLδ(x − x′)δ(t − t′). The constant T , which plays the role of temperature, is the rate of injection
of power into the laser by the noise. Throughout most of this paper T is viewed as a free parameter,
which may be controlled experimentally by coupling an external noise source. The slow saturable
gain g, as shown in [9], may be chosen without significant loss of generality, such that it sets the
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total intracavity power ‖ψ‖2 = 1
L

∫ L

0 dz|ψ(z)|2 to a fixed value P . g becomes then a Lagrange
multiplier for the fixed power constraint.

In this paper, we consider equation (1) in the special but important case that γs + iγk is a
real multiple of γg + iγd , known as the soliton condition. While in practice it is not always easy
to obtain, it is often a good working approximation, and facilitates the derivation of an explicit
expression for the invariant measure. When the soliton condition does not hold, the invariant
measure is not known and a different theoretical approach is needed, which is beyond the scope
of the present work [16].

When the soliton condition holds, one can define a ‘Hamiltonian’ functional,

H[ψ] =
∫ L

0
dz

(− 1
2γs|ψ(z)|4 + γg|ψ′(z)|2) , (2)

such that, as shown in [10], the invariant measure ρ[ψ] of equation (1) is

ρ[ψ] = Z−1e−H[ψ]/(LT)δ(P − ‖ψ‖2), (3)

Z =
∫

[dψ][dψ∗]e−H[ψ]/(LT)δ(P − ‖ψ‖2). (4)

Note that the power constraint is enforced explicitly. The study of steady-state properties of
equation (1) is now reduced, as in [7, 9], to that of an equilibrium statistical mechanics system
with partition function Z. It should be stressed that H is not actually the Hamiltonian of the
system, and does not have dimensions of energy, but rather of power × distance/time. We also
point out that, under the assumed soliton condition, H and therefore the statistical steady state,
do not depend on the strength of the refractive coefficients γk and γd [10]; the latter affect only
the dynamics.

The functional H is superficially quite similar to the critical Ginzburg–Landau (GL)
functional, the paradigm for the effective description of continuous phase transition [18]. In
equation (2), however, in contrast with the GL functional, the coefficient of the quartic term
is negative, making the constant (cw) configuration unstable and H unbounded from below. In
contrast with standard models of phase transitions, the instability is met by the global constraint of
fixed total power rather than by a local term of higher degree. Consequently, configurations where
a macroscopic fraction of the total power is concentrated in a narrow pulse become statistically
significant, and the resulting thermodynamics is radically different from the GL thermodynamics.
This feature, which is a natural property of SLD, is the reason the one-dimensional system exhibits
an ordering transition, which is impossible in the one-dimensional GL model, and why the mean
field-like arguments of section 3 are valid.

The physical content in equations (2)–(4) is of a competition between the ordering
nonlinearity and disordering noise. Each physical effect can be used to construct an associated
natural length scale: the pulse width

Lp = 4γg

γsPL
(5)

is inversely proportional to the saturable absorption strength, while the correlation length

Lc = γgP

LT
(6)
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Figure 1. A typical realization of the real part of the envelope ψ of the electric
field in the laser cavity, in the mode-locked phase (left), where the correlation
length is larger than the pulse width, and in the cw phase (right), where the pulse
width is larger than the correlation length.

is inversely proportional to the noise power injection rate. Both length scales are properly thought
of as microscopic, as they are much smaller than L, the cavity length. Nac ≡ L/ min(Lp, Lc) is
the number of active modes, which can be a large number in multimode lasers. In SLD, Nac is the
number of participating degrees of freedom, so Nac → ∞ is the thermodynamic limit, which we
study in this paper, neglecting terms of O(1/Nac). Thermodynamic quantities, and in particular
the mode-locking threshold must then be completely determined by the sole dimensionless
parameter

γ = 4Lc

Lp

= γsP
2

T
. (7)

γ is the normalized interaction strength; T = 1/γ is the normalized temperature.
When Lp 	 Lc, γ is large, the nonlinearity dominates, and the equilibrium is an ordered,

mode-locked phase, where the power P is divided between a single-pulse and continuum
fluctuations, as in the left panel of figure 1; when Lc 	 Lp, γ is small, the noise dominates,
and the equilibrium is a disordered phase, where the electric field consists only of spatially
homogeneous fluctuations, as in the right panel of figure 1. The analysis presented below shows
that these two phases are connected by a first-order phase transition, with coexistence for γ = 9.
Metastable pulsed configurations exist for γ > 8, while cw is metastable for all γ . In temperature
terms, cw is the high-temperature phase which coexists with the low-temperature mode-locked
phase at T = 1/9, and ‘superheated’ mode locking may persist up to T = 1/8. The free energy,
pulse power and RF power have similar simple expressions, see equations (17) and (18), and
figure 2.

SLD can also be formulated in Fourier space [7, 9, 10]. Then the degrees of freedom are
the discrete Fourier modes ψk, k = 2πn/L for integer n, and H takes the form

H =
∑

k

γgk
2|ψk|2 − γs

∑
k+k′=m+m′

ψkψk′ψ∗
mψ∗

m′. (8)

The mode phasors can be pictured as complex ‘spin’ variables, which interact nonlocally via the
ordering quartic saturable absorber term in H , and the spectral filtering acts as a damping term
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which increases quadratically with the displacement of the mode from the band centre. Mode
ordering is present when the mode variables acquire nonzero expectation values 〈ψk〉, with
k-independent phases, similar to spin ordering in ferromagnetism. Since each mode interacts
with all others, one can make the mean field approximation, replacing the ψk variables by their
expectation values in the interaction term in H , with negligible error in the thermodynamic limit
[9]. However, due to the presence of the quadratic filtering term, 〈ψk〉 depends on k, making the
Fourier space calculation cumbersome. Therefore, real space analysis is pursued in the following.

The fact that the parameter γ defined in equation (7) determines mode locking has an
important practical implication. In most lasers, a main source of white noise is spontaneous
emission whose power injection rate dictates a minimal ‘temperature’ [11]

Tse = µ(G − 1)h̄ω

t2
R

, (9)

where G is the gain factor, µ the population inversion factor, ω is the optical carrier frequency,
and tR is the roundtrip time. Therefore, assuming that γs and P are kept fixed, γ is proportional
to the square of the roundtrip time, when the repetition rate of the laser is varied, and for fixed γs

the mode-locking power is inversely proportional to tR. Furthermore, the nonlinearity strength
in some common mode locking methods employed in ultrafast optics, such as the nonlinear
polarization rotation technique [19], is proportional to the cavity length, and there the dependence
of γ and the threshold power on tR is even stronger. Therefore, spontaneous emission can place
a limit on the pulse repetition rate obtainable by passive mode locking.

Our analysis of the statistical mechanics problem equations (3) and (4) follows the textbook
approach of calculating the free energy F = −T log Z, from which other thermodynamic
quantities follow. However, the functional integral in equation (4) is not well-defined in the
continuum limit. Mathematically this is not a serious problem, since the invariant measure
is well-defined [21], but in order to use Z and F , we need to give a precise meaning to the
functional integral, as the continuum limit of a regularized version, where the integration is
finite-dimensional. Given a regularization scheme with N ψ integration, we define the regularized
partition function

ZN = aN

∫ N∏
n=1

( γg

L2T
dψndψ∗

n

)
e− HN [ψ]

LT δ(P − ‖ψ‖2
N), (10)

where HN and ‖ · ‖N are regularized versions of H and ‖ · ‖. The integration measure is multiplied
by factors of γg/L

2T to make ZN dimensionless, and by aN , a regularization scheme- and N-
dependent dimensionless constant, to make Z = limN→∞ ZN finite. The limit is independent of
the regularization scheme up to an unimportant multiplicative constant.

3. Mean field calculation of the free energy

As a preliminary step towards the calculation of F , we examine the problem in two limits.
In the first, T → 0, ρ is dominated by configurations, which minimize H for a given total
power P . These configurations, which are stationary solutions to equation (1) with the random
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term η droppes, are the well-known soliton-like pulses

ψ0(x) = eiφ

√
PL

2Lp

sech
(z − z0

Lp

)
, (11)

which depend on two real parameters, the pulse position 0 � z0 < L and phase 0 � φ < 2π.2

The T → 0 limit of F , the pulse free energyfp, is proportional to the minimal value of H

fp = H[ψ0]

L
= −γ2

s L
2P3

48γg

= −γT

12

L

Lp

. (12)

The second solvable limit is γs → 0, where H becomes quadratic and the partition function
Zc can be calculated explicitly, by diagonalizing the H in the Fourier representation and using
the Fourier decomposition of the delta function δ(x) = ∫ i∞

−i∞
dw

2πi e
zw. The Gaussian integration

gives (referring to equation (10)),

Zc = lim
N→∞

aN

∫ i∞

−i∞

dz

2πi
ePz

N∏
n=−N

π((2πn)2 + z)−1. (13)

aN may be chosen such that

Zc =
∫ i∞

−i∞

dz

2πi
ez

∞∏
n=−∞

(
1 +

Lz

Lc(2πn)2

)−1

. (14)

When L 
 Lc, the Euler–Maclaurin sum formula for the infinite product yields

∞∏
n=−∞

(
1 +

Lz

Lc(2πn)2

)−1

= exp

(
−

√
Lz

Lc

)
, (15)

and then the contour integral in equation (14) can be evaluated using the saddle point method;
the resulting expression for γs → 0 limit of F is the continuum free energy

fc = L2T 2

4γgP
= LT

4Lc

. (16)

Although the preceding expressions equations (12) and (16) for the free energy were obtained
in limiting cases, we now argue that the pulse free energy fp and the continuum free energy fc may
be combined into an expression for F valid for every γ . The argument is based on the following
premise: configurations ψ which contribute significantly to Z are such that ψ(z) = O(1) for most
z, with possibly a few narrow intervals of total width O(Lp), where ψ(z) = O(

√
L/Lp). Let w,

0 � w � P be the total power concentrated in regions where ψ is large. For z values where ψ is
small, the nonlinear term in H is negligible, and the existence of regions of large ψ affects the
statistics of the small ψ region only in that the total available power for fluctuations is P − w

2 Pulses of the form (11) obey the periodic boundary conditions only approximately. However, since the discrepancy
is exponentially small in the large parameter L/Lp, it is completely negligible.
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Figure 2. Left: the dimensionless free energy φ as a function of the dimensionless
pulse power y is shown for γ = 7–10 with higher values of γ corresponding to
lower curves and colder colours. Curves with two (local) minima correspond
to systems with a metastable state. Coexistence occurs at γ = 9, where the values
of φ at the two minima are equal. Right: the dimensionless pulse power ȳ as a
function of the dimensionless interaction strength γ . ȳ = 0 corresponds to cw.
Values shown in broken lines correspond to metastable states.

rather than P . The regions of small ψ therefore contribute fc|P→P−w to the total free energy.
Similarly, the regions of large ψ are so narrow that noise-induced fluctuations make negligible
contribution to the free energy in them, so that the large ψ regions contribute H[ψ]/(LT ) to
F . By the principle that F is minimized by the Gibbs distribution, the waveform in the large ψ

regions should be such that H[ψ] is minimized, that is, ψ will assume a soliton-like shape with
total power w, and contribute fp|P→w to F . We claim that since the mean field-like argument
presented here holds when Lp/L is small, it becomes exact in the thermodynamic limit, where
Lp/L → 0. This claim is established in a controlled calculation in section 4 below.

We can define a pulse-power dependent free energy f(w) = fc(w) + fp(P − w), which
is the analogue of the Landau function in mean field theory [22]. As in mean field theory,
F = minw f , and the minimizer w̄ is the pulse power, which plays the role of the order
parameter: w̄ = 0 means that the thermodynamically stable phase is cw. It is convenient to
express the thermodynamics using the dimensionless variables, γ = γsP

2/T , y = w/P and
φ(y) = (4Lc/TL)f(w); the scaled free energy φ is

φ(y) = −γ2y3

12
+

1

(1 − y)
. (17)

The function φ has the following properties (see figure 2): For γ ≤ 8 φ(y) has a single
minimum at y0 = 0, and for γ > 8, there is a second (local) minimum at y1(γ) = 1

2(1 +√
1 − 8/γ), which becomes a global minimum, when γ � 9 in the standard scenario of first-order

phase transition, see figure 2. Hence

ȳ =
{

0 γ < 9
1
2(1 +

√
1 − 8/γ) γ > 9,

(18)
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with coexistence at γ = 9. In terms of mode-locking equation (18) means that when T is large
enough or γs or P are small enough that γ < 9, the thermodynamically stable state of the system
is cw, and mode locking is stable when γ > 9.

However, equation (18) may fail to predict the observed behaviour of an actual system,
which can reside for a long time in a metstable state analogous to supercooling or superheating.
It follows from the properties of φ that metastable mode locking may persist for γ > 8, and
that cw is metastable for any positive γ . The latter result is a very robust property of the system,
stemming from the fact that fc is linear in w near w = 0, while fp, which is intrinsically nonlinear,
vanishes faster as w → 0. The metastability of cw is the starting point for the SLD study of self-
starting [15].

It is also straightforward to calculate other thermodynamic quantities, such as M ≡
〈∫ dz|ψ|4〉, which is directly proportional to the experimentally measurable RF power [8]. In the
thermodynamic limit, M receives its dominant contribution from the pulse, whence

M = L2

3Lp

w̄2. (19)

4. Transfer matrix calculation of the free energy

In this section, we reconsider the problem of calculating the partition function. Instead of
evaluating the integral expression (4), we solve the equivalent transfer matrix equation (26).
The solution is compatible with mean field theory, establishes rigorously the thermodynamic
results of the previous section such as equations (17) and (18), and demonstrates our earlier
claim that mean field theory is exact in the thermodynamic limit.

The transfer matrix method is better suited for fixed boundary condition problems.
Accordingly, we use the fixed boundary condition partition function Z̃ and free energy F̃ =
− log Z̃ with endpoint values ψ(0) = ψi, ψ(L) = ψf . In this calculation, it is more convenient
to use system parameters that do not depend on the system size, so we define

Z̃(ψi, ψf, P̃, L) =
∫ ψ(L)=ψf

ψ(0)=ψi

[dψ][dψ∗]× e
∫ L

0 dz( 1
2 α1|ψ(z)|4−α2|ψ′(z)|2)δ

(∫ L

0
dz|ψ(z)|2 − P̃

)
. (20)

The mean field arguments of the previous section are straightforwardly adapted to the fixed
boundary conditions. As before, we define a free energy function f̃ (w) of the pulse power w,
which is the sum of the pulse free energy f̃ p(w) and continuum free energy f̃ c(w). The continuum
free energy is a bulk quantity, and insensitive to boundary conditions in the thermodynamic limit;
it is therefore given by equation (16), which in the present parametrization reads

f̃ c = L2

4α2(P̃ − w)
. (21)

Like fp, f̃ p is obtained by minimizing the functional H in the space of functions of total power w.
However, the fixed boundary conditions break the translation invariance, and the minimization
is achieved, when pulses are created near the boundaries. Standard variational methods yield
the following result: the minimizer of H takes one of four possible forms, which include a
partial pulse at each boundary. The forms differ in the relative position of pulse maximum and
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the boundary point. The four possible values of f̃ p are distinguished by the four possible sign
choices in

f̃ p = 2
√

α2

3α1

(
2λ

3
2 ±

(
λ − α1

2
|ψi|2

) 3
2 ∓

(
λ − α1

2
|ψf |2

) 3
2
)

− λw, (22)

where in the first sign choice the upper (lower) sign refers to the possibility that a pulse maximum
lies at z > 0 (z < 0). The second sign choice refers similarly to the position of the pulse maximum
relative to the z = L boundary. λ is a Lagrange multiplier for the power constraint, given
implicitly by

w = 2
√

α2

α1

(
2
√

λ ±
√

λ − 1
2α1|ψi|2 ∓

√
λ − 1

2α1|ψf |2
)

. (23)

It is next to be shown that the free energy F̃ = min(f̃ p(w) + f̃ c(P̃ − w)) solves the transfer
matrix equation (27) which is derived from equation (26) for Z̃. Like Z, Z̃ needs to be defined
using a limiting procedure with a properly scaled functional measure (see equation (10)). As
explained above, results do not depend on the regularization procedure. Here it is convenient
to use lattice regularization, rather than the regularization scheme employed in equation (14),
approximating derivatives with finite differences and integrals with Riemann sums. Let Z̃δ denote
the lattice regularization of Z̃ with a small lattice spacing δ. It satisfies the identity

Z̃δ(ψi, ψf, P̃, L) =
∫

α2

δπ
dψ dψ∗Z̃δ(ψi, ψ, P̃ − δ|ψ|2, L − δ) exp

(
δ

2
α1|ψ|4 − α2

δ
|ψf − ψ|2

)
.

(24)

Taylor expansion of the right-hand side in powers of δ and ψ − ψf gives

Z̃δ(ψi, ψf, P̃, L) = Re
∫

d2ψ exp
(
−α2

δ
|ψf − ψ|2

) (
1 + 2(ψ − ψf)∂ψf + (ψ − ψf)2∂ψ2

f

+|ψ − ψf |2∂ψf ∂ψ∗
f
− δ|ψf |2∂P̃ − δ∂L + 1

2δα1|ψf |4
)

Z̃δ + o(δ), (25)

where the arguments of Z̃ are now the same on both sides of the equation. The ψ integration in
(25) is Gaussian, and gives in the continuum limit δ → 0 the transfer matrix equation for Z̃

1

α2
∂ψf ∂ψ∗

f
Z̃ − |ψf |2∂P̃ Z̃ − ∂LZ̃ + 1

2α1|ψf |4Z̃ = 0. (26)

The equation for F̃ is obtained by substituting Z̃ = e−F̃ in (26) and keeping only leading terms
in L/Lp,

1

α2
|∂ψf F̃ |2 − |ψf |2∂P̃ F̃ + 1

2α1|ψf |4 = 0. (27)

The task of showing that F̃ satisfies the differential equation (27) will be accomplished by
showing that the free energy obtained by minimizing f̃ with respect to w for each of the four
possible sign choices in equation (21) satisfies equation (27). Since F̃ is equal to one of these
functions, it also solves this equation. To this end, we recall the definition of w̄, the minimizer
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of the free energy, and define λ̄, which is related to w̄ via equation (23). It is straightforward to
obtain an explicit expression for λ̄

λ̄ = L2

4α2(P̃ − w̄)2
. (28)

The partial derivatives of F̃ then read

∂P̃ F̃ = λ̄, ∂ψf F̃ = ∓ψ∗
f

√
α2(λ̄ − 1

2α1|ψf |2), (29)

where the upper or lower sign choice follow to the second sign choice in equations (22) and (23).
Equation (27) is identically satisfied by these explicit expressions for both sign choices, and the
demonstration is complete.
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