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Complete characterization of optical pulses using a
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Abstract

A simple method for complete characterization of periodic optical pulses based on time domain interferometry is

demonstrated. The method does not require the use of an interferometer. A chirped fiber Bragg grating is used for

stretching the pulses to be characterized. The interference between the stretched overlapped pulses is recorded by a pho-

todiode and a sampling oscilloscope. The phase response of the chirped fiber Bragg grating is measured by an all-fiber

Michelson interferometer. A fast-Fourier-transform method is used for processing of interference patterns in both the

time and spectral domain.

� 2005 Elsevier B.V. All rights reserved.
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The development of methods for complete char-

acterization of ultrashort optical pulses has great

importance for optical communication implemen-

tations. One of the widely used methods is fre-

quency-resolved optical gating (FROG) (see, for

instance, reviews [1,2]). Compared to the above

method, linear interferometric measurements that
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are done in the spectral [3–5], time [6,7] and spa-

tial-spectral [8,9] domains or using spectral filter-

ing [10] or real-time spectral interferometry [11]

offer simpler and direct (i.e., noniterative) process-

ing of the results and much higher sensitivity.

However, even the linear methods, very often

include nonlinear ingredients, such as cross-

correlation recording [6], nonlinear frequency
shear [4] or FROG for characterization of the ref-

erence pulse [3].

For pulses shorter than �15 ps, recording the

temporal pattern of the interference becomes
ed.
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Fig. 1. Schematic representation of the measurement setup.
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Fig. 2. Oscilloscope trace (solid line) of the pulses measured

after the reflection from the chirped fiber Bragg grating.

Reconstructed left side (dotted line) and right side (dashed

line) of the reflected pulse (with the no interference between

adjacent pulses).
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problematic due to limited resolution of the oscil-

loscope and the photodetector. In this case, meth-

ods such as expanding the time scale with a time

microscope [12] or a dispersive delay line [7], con-

version the time scale to spectral or spatial scales
[13,9] can be applied.

In the conventional time-domain interferome-

try, an original pulse train is split, as in spatial

interferometry, and the interference is obtained be-

tween two replicas of the original pulse train.

However, for periodic pulses there is a unique pos-

sibility of obtaining interference between pulses of

the same pulse train without splitting.
In this paper, we present a simple method of

complete optical pulse characterization based on

time domain interferometry. In this method, the

interference between adjacent pulses that are

broadened as a consequence of reflection from a

chirped Bragg grating is used for characterizing

the pulses. Our method can be called ‘‘interferom-

etry without an interferometer’’. Therefore, typical
drawbacks, mostly connected with stability of the

mechanical system and disturbance due to envi-

ronmental conditions are eliminated. The oscillo-

scope interference pattern is always stable. The

method is very simple to implement. The chirped

Bragg grating and the circulator can be replaced

by a span of standard optical fiber.

We had a brief conference presentation of this
method [14], but here we expand the work and

include in it characterization of short pulses,

for which the temporal resolution of an oscillo-

scope is insufficient for a direct pulse measure-

ment. Our analysis in this paper shows that the

method can be applied to such short pulses, only

that periodic pulse bursts ought to be formed

from the pulse train, while taking into account
the interference between multiple neighboring

pulses.

The optical pulses to be characterized are

reflected by the chirped fiber Bragg grating. For

an ideal chirped grating the time delay of the

reflected light can be expressed as [15]

sðxÞ ¼ b2Lðx� x0Þ; ð1Þ

where

b2 ¼ 2pc=ðx2
0vgDkchirpÞ; ð2Þ
is the group velocity dispersion of the grating,

L = 2Lg, Lg is the grating length, x is the angular

frequency of the pulse spectrum, x0 is the fre-

quency corresponding to the central Bragg wave-

length of the grating, vg is the average group
velocity in the fiber, and Dkchirp is the chirped

bandwidth. It can be seen from (1) that the differ-

ent spectral components of the reflected pulse un-

dergo different delays and therefore the pulses

are spread after the reflection (see Fig. 1). The

grating dispersion was chosen, such that the

spreading of the pulses causes a slight overlap be-

tween them that provides the interference pattern
shown in Fig. 2 (solid line). If the overlap is small,
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it can be assumed that the interference occurs only

between adjacent pulses. Then, the method is sim-

ilar to shearing interferometry, where the phase

difference is measured between two replicas of

the same pulse, with a relative time shift Dt, giving
a phase difference: Dur(t) = ur(t) � ur(t � Dt),
where the index r refers to the pulse that is re-

flected by the grating. In our method, this shift is

equal to the pulse period T. Thus, the phase differ-

ence can be rewritten as

DurðtÞ ¼ urðtÞ � urðt � T Þ: ð3Þ
The phase difference Dur(t) and then the phase

ur(t) as well as the intensity Ir(t) of the reflected

single pulse can be reconstructed from the interfer-

ence pattern (see below). The intensity Ii(t) and the

phase ui(t) of the original pulse (before the reflec-

tion) can be reconstructed by calculating the pulse

as being reflected again from the chirped grating

with an opposite dispersion.
The interference within the period (from 0 to

420 ps in Fig. 2) can be considered as a result of

the superposition of the left and right side of the

pulse with intensities I1r(t) and I2r(t), respectively.

In this case, the intensity of the interference is

equal to

I rðtÞ ¼ I1rðtÞ þ I2rðtÞ þ 2½I1rðtÞI2rðtÞ�1=2 cos½DurðtÞ�:
ð4Þ

We can roughly estimate the expected frequency of

the oscillations in the interference pattern. The

spectral phase /(x) acquired by the pulse in the

reflection from the grating and the time delay
s(x) are related as

sðxÞ ¼ o/=ox: ð5Þ
In the first-order dispersion approximation (1), we

obtain from (5)

/ðxÞ ¼ b2Lðx� x0Þ2=2: ð6Þ
It is formally analogous to the phase acquired by

the spatial frequency components of a paraxial

spatial beam propagating along a distance z:
/ðk?Þ ¼ zk2?=ð2kÞ, where k is the wavenumber

and k^ is the transverse component of the wave

vector. By using this space-time duality [16], we

can present the field of the reflected pulse for suf-

ficiently large dispersion of the grating as the
time-domain analog of the spatial Fraunhofer

diffraction

ErðtÞ / expðit2=2b2LÞF ðt=b2LÞ; ð7Þ
where F(x) is the complex spectrum of the pulse to

be measured. It can be seen from (7) that in this

approximation the spectral components of the re-

flected pulse are mapped to the temporal domain.
This effect was exploited for real-time spectrum

analysis of optical pulses using the dispersion of

standard optical fiber [17]. Neglecting the chirp

of the original pulse, we obtain from (7) the phase

of the reflected pulse

urðtÞ ¼ t2=2b2L

and from (3) the phase difference is

DurðtÞ ¼ Tt=ðb2LÞ � T 2=ð2b2LÞ: ð8Þ
It follows from (8) and (4) that the expected fre-

quency of the oscillations in the interference pat-

tern can be estimated as

fint ¼ T=ð2pb2LÞ: ð9Þ

Note that the frequency dependence of the spectral

phase can deviate from the quadratic form given

by (6). Therefore, we measured this dependence

as seen below. We also obtained fint experi-

mentally.
In the experiments, the optical pulses were pro-

duced by a mode-locked laser diode. The modula-

tion frequency was 2.38 GHz and the pulse width

was 28 ps. We also measured those pulses directly

by an oscilloscope, and compared the result ob-

tained by our method. We used a dispersion com-

pensating fiber grating, produced by E-TEK

ElectroPhotinic Solutions, with 1 dB bandwidth
of 0.528 nm and first-order dispersion of

D Æ L = �1108 ps/nm (D ¼ 2pcb2=k
2
0, c is the veloc-

ity of light, k0 = 1541.3 nm is the central Bragg

wavelength of the grating, b2 Æ L = 1397 ps2). We

have assumed above that the pulses are strictly

periodic. However, this condition was slightly

violated in the experiment because of the laser

instability. Therefore, the interference patterns
recorded by an oscilloscope were averaged.

The processing of the interference pattern, pre-

sented in Fig. 2, was accomplished as follows. Sim-

ilarly to reference [18], the Fourier transform of
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the interference intensity is calculated. The result is

shown in Fig. 3. Since the overlap between the re-

flected pulses is small, the frequency of the rapid

oscillation of the interference is large enough to al-

low separation in the Fourier transform between
the central band that corresponds to the slow var-

iation of I1r(t) + I2r(t) in (4) and the sidebands,

related to the oscillations cos[Dur(t)] of the inter-

ference pattern. The absolute value of the inverse

Fourier transform of the central band only gives

the value I1r(t) + I2r(t) in relative units. The same

calculation for the sideband gives the value of

2[I1r(t)I2r(t)]
1/2. From these two equations, we

can calculate the values of I1r(t) and I2r(t), thus

reconstructing the shape of the intensity of the sin-

gle pulse (with no interference), reflected from the

chirped grating. The results of the reconstruction

are shown in Fig. 2.

The argument of the inverse Fourier transform

of the sideband in Fig. 3 gives the phase difference

Dur(t). It is significant that in our method there is
no ambiguity in the choice of the sign of Dur(t) (or

in the choice of the right or left sideband, which is

the same). This sign is completely defined by the

sign of the Bragg grating chirp. Therefore, the pro-

posed method is unambiguous. The phase ur(t)

cannot be found using the shearing interferometry

method because in this case the time shift Dt is not
small. We assume that the phase can be described
in a polynomial form and the coefficients are cal-

culating by optimal fitting to the values of Dur(t).
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Fig. 3. Calculated Fourier transform of the interference

pattern, presented in Fig. 2.
To reconstruct the intensity Ii(t) and phase ui(t)

of the original pulse, the pulse reflection with Ir(t)

and ur(t) was calculated from the same chirped

grating, but with opposite dispersion, similarly to

[7].
The spectral characteristics of the chirped Bragg

grating were measured using a broadband light

source (amplified spontaneous emission of an

erbium doped fiber amplifier) and an optical spec-

trum analyzer with a resolution of 0.01 nm. An all-

fiber Michelson interferometer was used to mea-

sure the spectral phase of the reflection. One of

the reflecting mirrors of the interferometer was
the chirped fiber Bragg grating. The light reflected

from the grating and from the reference mirror

interfered. Since the grating reflection phase

depends on the wavelength, the intensity of the

interference sinusoidally varies as the function of

the wavelength. For the nearly quadratic fre-

quency dependence of the spectral phase (6), the

period of the sinusoidal intensity should vary
approximately linearly with the wavelength. The

interference pattern, recorded in the spectral do-

main with an optical spectrum analyzer is shown

in Fig. 4. The decay of the interference pattern is

attributed to insufficient resolution of the spectrum

analyzer. Processing of the interference pattern

using Fourier transform, in the same way as was

described above for the temporal interference pat-
tern, enabled calculation of the spectral reflection

phase. Note that the slow variation of the interfer-
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Fig. 4. Spectral interference between the light reflected from the

chirped Bragg grating and from the reference mirror in the

Michelson interferometer, measured by an optical spectrum

analyzer.
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Fig. 7. Spectrum of the original pulses: solid curve – measured

by an optical spectrum analyzer, dotted curve – calculated for

the reconstructed pulse.
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ence pattern envelope does not affect the extracted

spectral phase [18]. Fig. 5 shows the measured

grating reflectivity (solid line) and the spectral

reflection phase (dotted line) reconstructed from

the interference pattern shown in Fig. 4.
The reconstructed intensity Ii(t) and phase ui(t)

of the original pulse are given in Fig. 6. For com-

parison, the intensity of the original pulse, mea-

sured using an oscilloscope is also shown. The

figure shows very good agreement between the

two measurements.

To verify that the phase measurement by the

proposed method is correct we have calculated
the spectrum of the reconstructed original pulse

and compared it with that measured by an optical

spectrum analyzer. Comparison of the results is

presented in Fig. 7. Notice that the calculated
1541.21541.0
0

20

40

60

80

100

120

140

P
ha

se
 (

ra
d)

1540.8 1541.4 1541.6 1541.8
0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

iv
ity

Wavelength (nm)

Fig. 5. Measured reflectivity (solid line) and reflection phase

(dotted line) of the chirped Bragg grating.
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Fig. 6. Pulse intensity profile measured by the proposed

method (solid line) and an oscilloscope (dotted line). Pulse

phase profile measured by the proposed method (dashed line).
spectrum of the single pulse should be the envelope

of the measured spectrum of the periodic pulses.

The figure shows good agreement.

According to (9), the group velocity dispersion

of the grating has to be sufficiently high so that

the frequency fint of the sideband in the Fourier
transform be within the bandwidth Df of an oscil-

loscope and a photodiode

fint < Df : ð10Þ
On the other hand, it was assumed that the inter-

ference occurs only between adjacent pulses. This
implies that the pulse stretching by a fiber Bragg

grating is limited by

sout < T=1:5; ð11Þ
where sout is the width of the single stretched pulse.

For Gaussian pulses, inequalities (10) and (11) give

the following estimations:

sin > 4:2ðb2L=T Þ; ð12Þ

b2L=T > 1=ð2pDf Þ; ð13Þ
where sin is the width of the original pulse. It was

assumed in the derivation of (12) and (13) that
sout � sin. It follows from (12) and (13) that for

a bandwidth Df = 50 GHz (of the oscilloscope plus

detector), the pulses measured by the described

method cannot be shorter than 13 ps.

For pulses shorter than this limit, the method is

slightly modified. It should be taken into account
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that now the interference occurs not only between

adjacent pulses, and in the Fourier transform,

higher sideband orders appear. In this case, peri-

odic pulse bursts ought to be selected from the

pulse train, for instance, by using amplitude mod-
ulation with square waveform. It is clear, that a

sideband of order m in the Fourier transform cor-

responds to interference between all pulses in the

burst with a time distance m Æ T. The case m = 0

corresponds to the sum of the intensities of all

stretched pulses in the burst. Then, the signals,

corresponding to the sidebands of order

m = 0,�1 (for b2L < 0) can be expressed in the
form:

I0ðtÞ ¼
XN
n¼�N

I rðt � nT Þ

¼
Z 1

�1

XN
n¼�N

expð�inxT Þ
" #

F ðxÞ expðixtÞ dx;

ð14Þ

I�1ðtÞ ¼
XN�1

n¼�N

Erðt� nT ÞE�
r ðt� nT � T Þ

¼
Z 1

�1

XN�1

n¼�N

expð�inxT Þ
" #

GðxÞ expðixtÞ dx;

ð15Þ

where Er(t) and Ir(t) are the field and the intensity
of the central pulse in the reflected pulse burst

(with no interference), 2N + 1 is the number of

the pulses selected in the burst, E�
r ðtÞ is the complex

conjugate field, F(x) and G(x) are the Fourier

transforms of the functions Ir(t) and ErðtÞ�
E�
r ðt � T Þ, respectively. The Fourier transform of

I0(t) and I�1(t) in (14) and (15) gives the Fou-

rier coefficients cmk of the sidebands with
m = 0,�1:

c0k ¼
XN
n¼�N

expð�i2pknT=TmÞ
" #

F ð2pk=TmÞ; ð16Þ

c�1k ¼
XN�1

n¼�N

expð�i2pknT=TmÞ
" #

Gð2pk=TmÞ;

ð17Þ
where Tm is the period of the amplitude modula-

tion. From (16) and (17), F(x) and G(x) can be

found for the discrete values xk = 2pk/Tm, when

the coefficients c0k and c�1k are obtained from

the Fourier transform of the experimental inter-
ference pattern. Then, Ir(t) and the phase differ-

ence Dur(t) between two adjacent reflected

pulses are reconstructed by the inverse Fourier

transform.

We emphasize again that the chirped grating

dispersion chosen has to be sufficiently high so that

at least the frequencies of the sideband of the order

m = 1 are less than the bandwidth of an oscillo-
scope and a detector. The sidebands with m > 1

will be rejected in this case by an oscilloscope

and a detector, but anyhow there is no need to

process these sidebands. It implies that our method

can also be used in cases of insufficient temporal

resolution of an oscilloscope and a detector. It is

clear that for shorter pulses, the bandwidth of

the gratings has to be appropriately increased. It
leads, according to (2), to decreasing of the group

velocity dispersion and requires, for keeping the

same interference frequency (Eq. (9)), fabrication

of longer gratings with stringent performance in

their temperature stability.

In conclusion, a method for complete character-

ization of periodic optical pulses based on time do-

main interferometry with a chirped fiber Bragg
grating is demonstrated. The method is very sim-

ple for implementation. An additional advantage

of the method is stability of the interference pat-

tern and insensitivity to environmental influences.

Therefore, we have a very robust technique for

the pulse characterization. Expanding of the time

scale allows measurement of pulses with duration

of shorter than the time response of the photode-
tector and the oscilloscope. A drawback of the

use of Bragg gratings is the need to match the cen-

tral Bragg wavelength and the bandwidth of the

grating to the spectrum of the pulses. Nevertheless,

there are ways to make the right tuning. One can

use, for example, standard optical fibers with a

wide bandwidth, as a pulse stretcher. Our tech-

nique can also be applied for a single pulse or
for pulses with very small duty-cycle. In this case,

two replicas of the original pulse has to be pro-

duced, for instance, by reflection from two sides
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of a glass plate [11] and then stretching as was de-

scribed above.
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