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We present a rigorous statistical-mechanics theory of nonlinear many mode laser systems. An important
example is the passively mode-locked laser that promotes pulse operation when a saturable absorber is placed
in the cavity. It was shown by Gordon and Fischer[Phys. Rev. Lett.89, 103901(2002)] that pulse formation
is a first-order phase transition of spontaneous ordering of modes in an effective “thermodynamic” system, in
which intracavity noise level is the effective temperature. In this paper we present a rigorous solution of a
model of passive mode locking. We show that the thermodynamics depends on a single parameter, and
calculate exactly the mode-locking point. We find the phase diagram and calculate statistical quantities, in-
cluding the dependence of the intracavity power on the gain saturation function, and finite size corrections near
the transition point. We show that the thermodynamics is independent of the gain saturation mechanism and
that it is correctly reproduced by a mean field calculation. The outcome is a new solvable statistical mechanics
system with an unstable self-interaction accompanied by a natural global power constraint, and an exact
description of an important many mode laser system.

DOI: 10.1103/PhysRevE.70.046108 PACS number(s): 05.70.Fh, 42.55.Ah, 42.65.2k

I. INTRODUCTION

Lasers can produce light in continuous wave(cw) or
pulsed manners. A special pulsed operation is mode-locking,
found shortly after the laser discovery in the early 1960s[1].
Since then, mode-locked lasers became a leading way to pro-
duce ultra short pulses reaching today a few femtoseconds,
or about two light-wave cycles. In a mode-locked operation,
many axial modes in a broad frequency bandwidth are phase
locked and thus provide one or multiple pulses in the cavity,
giving at the output a light pulse train. The understanding of
the conditions under which a laser operates in pulsed regime
rather than in continuous wave regime is a question of great
interest, both theoretical and practical. This question has
been addressed in various studies, being referred to as “the
second threshold”(the first one being the lasing itself) in the
earlier years[2–4], and recently, in the context of laser with
a saturable absorber, as the “self-starting” problem[5–12].

Formation of pulses in lasers relies on the interaction be-
tween axial modes. Such an interaction can be provided ei-
ther by rendering the system time dependent(modulating) or
by a suitable nonlinearity in the dynamics of the system.
These two methods are commonly referred to as “active” and
“passive” mode-locking, respectively. One type of nonlinear-
ity known to encourage pulsed operation is saturable absorp-
tion. The light transmissivity through a(fast) saturable ab-
sorber is anincreasingfunction of the(instantaneous) input
intensity. The saturable absorber destabilizes the laser opera-
tion into configurations where most of the power is concen-
trated in short pulses. In the frequency or mode domain the
saturable absorber induces a nonlinear four-wave-mixing in-

teraction between the modes, as does the Kerr effect, with
the difference that it is dissipative rather than dispersive.

The dynamics of a laser is always subject to noise. Beside
the usual noise sources present in every physical system,
there is the inevitable fundamental noise of spontaneous
emission. This noise is inherent in lasers, since it always
accompanies coherent amplification, on which lasers rely.
Therefore a model of a laser that does not take noise properly
into account risks missing key features in the physics of a
laser system.

The majority of laser theories treat noise as a perturbation,
if at all, expecting it to manifest itself as fluctuations in the
laser output. However, this approach greatly underestimates
the effect of noise. It has been recently shown[13] that even
very weak noise(compared to the intracavity power of the
laser) is sufficient, for example, to destabilize a passively
mode-locked laser, revealing a dramatic nonperturbative ef-
fect of the noise.

We have recently developed[14,15] a new approach for
the many interacting mode system, with specific emphasis on
aspects of pulse formation in mode-locked lasers. We estab-
lished an analogy between the behavior of the electromag-
netic field (the mode system in a laser) in the presence of
noise and equilibrium statistical mechanics, and applied the
powerful tools of statistical mechanics to the problem of
mode locking. In particular it was found that the entropy
associated with the noise is an essential ingredient in the
theory of mode locking. This approach gave an inherent ex-
planation for many experimental phenomena of mode-locked
lasers, especially the existence of a threshold and the abrupt-
ness of formation of pulses. Passive mode locking was iden-
tified with a first-order phase transition in the model statisti-
cal mechanics system. Many other theoretical and
experimental features[16] were found, among them, hyster-
esis, superheating and supercooling, successive formation of
multiple pulses in the cavity and more.
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Reference[14] introduced a theoretical model of a pas-
sively mode locked laser with simplified spectral filtering of
the gain, where the laser modes are restricted to a predefined
band, and studied it with mean field analysis of the mode
interaction induced by the saturable absorber and with nu-
merical simulations. These indicated a first order phase tran-
sition when the effective temperature, i.e., the noise power,
or alternatively the intracavity power, is varied. The ordered
phase corresponds to a mode locked configuration, while the
disordered phase corresponds to multimode continuous wave
operation.

The present paper re-examines the model of Ref.[14],
slightly modified to make it local in real space, which
amounts, as we show here, to a coarse grained description of
the electric field in the laser cavity. We present three new
main results, which together furnish a thorough analysis of
the theoretical model, showing that it captures the correct
phenomenology of passive mode locking in terms of the
thermodynamic picture put forward in Ref.[14].

The first main result, which is the subject of Sec. III, is an
improved mean field theory, which overcomes some of the
drawbacks in the analysis of Ref.[14]. The free energy in the
new mean field theory is, unlike previous results,exactin the
thermodynamic limit, where the number of active modes
tends to infinity. The main advantages of the mean field
analysis are its simplicity, and its direct description in terms
of physical processes. Still, it relies on uncontrolled approxi-
mations based on heauristic arguments.

The second main result is an exact rigorous transfer ma-
trix calculation of the free energy and other thermodynamic
quantities in inverse powers of the number of active modes.
This is the subject of Sec. IV. In addition to providing a firm
footing to the arguments of Sec. III, the transfer matrix cal-
culation provides results which are valid for a large but finite
number of modes, and are important for comparison with
experiments.

In Sec. V we tackle the subject of gain saturation. It is
well known that the total intracavity power is deterimined by
the saturable gain of the amplifier[19]. This fact led[14] to
assume that the intracavity power is fixed once and for all,
and this is the approach taken in Secs. III and IV here. How-
ever, the intracavity power can and does depend on the work-
ing conditions of the laser.

The third main result of this paper is to show that there is
no essential loss of generality in this approach: The thermo-
dynamics, and in particular the question of mode locking,
depends directly only on the intracavity power and not on the
details of the gain saturation mechanism. This broadly appli-
cable result follows from the statistical physics principle of
equivalence of ensembles, one with fixed power, and one
with variable power, which may be likened to the canonical
and grand-canonical ensembles of statistical mechanics, re-
spectively. The results of Sec. V also allow for the actual
calculation of the intracavity power for specific models of
gain saturation, again a useful result for the comparison with
and design of experiments.

An important corollary of all these results, which is not
self-evident, is that mode locking and pulse properties de-
pend on asingledimensionless parameter, the strength of the
saturable absorption multiplied by the intracavity power

squared, and divided by the noise strength, and the transition
occurs when this parameter crosses a threshold value, which
we calculate explicitly.

As a statistical mechanics problem, the model can be lik-
ened to a gas of(complex) spins, with aucu4 self-interaction,
and a global constraint of total amplitude, quite similar to the
constraint imposed on spins in the Berlin-Kac spherical
model [20]. Normally the statistical mechanics of such sys-
tems leads to simple equipartition. Here, however, the energy
of the self-interaction term isnegative, and at small enough
temperature, or high enough power the instability stemming
from the self-interaction drives the system into a pulsed
state, where most of the power resides in a single spin. In
Fourier(mode or wave numberk) representation the model is
equivalent to a classical complex spin chain with a special
nonlocal interaction that drives the mode-locking transition,
which in this representation is a standard ordering transition.
Figure 1 shows the difference between typical mode-locked
and non-mode-locked configurations in Fourier space and in
real space in the context of the coarse grained model dis-
cussed below.

While in this work the quartic self-interaction is attributed
to saturable absorption, the model can be put into a broader
context. The quartic interaction is of general interest, being
the lowest-order nonlinearity which is translation, inversion
and rotation invariant, and local. This interaction itself has
been very extensively studied, but we are not aware of pre-
vious statistical-mechanics studies of its interplay with a
nonlocal power constraint. In some previous well-known
statistical-mechanics studies of lasers[3], this nonlocal con-
straint did not exist in the model, which may explain why the
mode-locking noise-induced threshold behavior has not been
previously found. Since a global limitation of power is com-
mon in physical systems, our model may be an important
prototype in nonlinear optics and elsewhere.

II. THE MODELING OF PASSIVE MODE LOCKING

A. The master equation

In a nondispersive lossless cavity the electric field at any
given point is periodic in time, with the roundtrip time as the
period. Once the laser amplifier, or other elements such as
dispersion and nonlinearities, are introduced, the time depen-
dence of the electric field is more complicated. Nevertheless,
the change in the electric field between instances separated
by the round-trip time is usually small. Therefore, the elec-
tric field is often described by a master equation[17], which
is an equation for the slow evolution of the electric field at an
arbitrary reference point inside the cavity between consecu-
tive round-trip periods.

An alternative formulation of the master equation, which
is mathematically equivalent, is obtained by passing to a
frame moving with the group velocity of the optical signal.
In this frame the electric field at a pointx inside the cavity at
time t is expressible asEsx,td=Refeiv0tcsx,tdg, wherev0 is
the frequency of oscillations in the moving frame at the band
center, andc is a slowly varying envelope. We assume as
customary that the vector character of the electric field is not
important, and treat it as a scalar. The master equation is then
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an equation for the temporal evolution of the envelopec,

]tcsx,td = Gfcgsx,td + hsx,td, s1d

whereG is the functional which represents all physical pro-
cesses that modify the shape of the wave form, andh is a
random term, which models the effects of noise. The cavity
length denoted byL and c is defined on the interval 0øx
øL with boundary conditionscs0,td=csL ,td.

In the context of passive mode locking, the net gain has
three essential components:G=Ggain+Gsa+Gsp, stemming
from the actions of the saturable gain of the amplifier, the
saturable absorber, and the spectral filtering of the amplifier,
repsectively. The net pumping of energy by stimulated emis-
sion is modeled by

Ggainsx,td = gsPdcsx,td, s2d

whereP=s1/Lde0
L ucsx,tdu2 dx is the total power in the cav-

ity. The saturable gainfunction g is monotonically decreas-
ing with positive values for smallP and negative for largeP,
where various losses overcome the power supplied by the
amplifier. It includes losses caused by the saturable absorber
at zero power.

A necessary ingredient for passive mode locking is satu-
rable absorption, wherein the dissipation lossesdecreaseas
the power increases. Unlike the saturable amplifier, the re-
sponse of the saturable absorber is fast, so it depends on the
instantaneous powerucu2 rather than on the total powerP.
We choose the specific form of saturable absorption

Gsasx,td = gsucsx,tdu2csx,td, s3d

with gs.0, valid for ucu2 not too large[17]. Note that since
losses are already taken into account inGgain, the saturable

absorption term describes an additional “gain” term which is
absent whenc=0.

The third part models the spectral dependence of the am-
plifier that has a characteristic frequency, which we assume
lies at the center of the wave packet. Define the Fourier
expansion of the wave packet,

csx,td = o
m=−`

`

bmstde2pimx/L. s4d

Near the resonance, the pumping efficiency falls down qua-
dratically in the spectral distance. The net gain for modes off
the center of the band is therefore reduced by

Gspsm,td = − ggS2pm

L
D2

bmstd, s5d

wheregg is positive.
The resulting gain functional can be expressed as the

functional derivative

Gsx,td = − dHfcg/dc*sxd s6d

of

Hfcg =E
0

L

dxS−
gs

2
ucsxdu4 + gguc8sxdu2D

+ LUS 1

L
E

0

L

ucsxdu2 dxD , s7d

with the definitionU8sPd=−gsPd.
In addition to the deterministic gain terms, the laser light

is also subject to the effects of the random noiseh, which
turn out to be crucial in the context of passive mode locking.

FIG. 1. The two “thermodynamic phases:” A typical non-mode-locked configuration is shown on the left-hand column of the figure and
a mode-locked one on the right. The real space configurations of the coarse grained model are shown on the top row, see Eqs.(17) and(18)
for definitions. The Fourier modesam, defined in Eq.(21), are displayed on the bottom row as a set of phasors, each arrow representing the
complex value of a Fourier mode.
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An inherent source of noise is the spontaneous emission
from the amplifier. This type of noise is well modeled as
white and Gaussian. We will suppose therefore thath is a
complex Gaussian white uncorrelated noise with a covari-
ance function,

kh*sx,tdhsx8,t8dl = 2TLdsx − x8ddst − t8d, s8d

wherek·l stands for an ensemble average.

B. The invariant measure

It is well known [14,21] that the invariant measure of
gradient flow with additive white noise, such as Eq.(1) with
Eqs.(6) and (8) is

rfcg = Z−1e−Hfcg/sLTd, s9d

where the partition function is

Z =E fdcgfdc*ge−Hfcg/sLTd, s10d

and the notationfdcg indicates functional integration. Thus,
the study of passive mode locking in a laser with spectral
filtering and saturable absorption reduces to the analysis of
the statistical mechanics system described byZ.

The physical ingredients in the gain functional discussed
so far do not include refractive effects such as dispersion and
the Kerr nonlinearity, which are important in most laser sys-
tems [17]. When such terms are included inG, it can no
longer be written as a gradient as in Eq.(6), and the invariant
measure is, in general, much more complicated. Neverthe-
less, as pointed out in a previous work[15], r serves as the
invariant measure also when dispersive effects are included,
provided that a certain integrability condition, sometimes
called the soliton condition, holds. Furthermore, the numeri-
cal studies of Ref.[15] indicate that many of the qualitative
properties that results derived in the integrable case, where
the invariant measure is given by Eq.(9), persist even when
the integrability condition ceases to hold. The purpose of this
work is to study in detail the integrable case.

C. The coarse-grained model

We proceed to present a modified model, first suggested
in Ref. [14], characterized by a simplified spectral profile.
Namely, we replace the quadratic filtering of Eq.(5), by a
spectrum limited to a finite band, in which the gain acts
equally on all modes. It is based on the following observa-
tion. The spectral filtering termgguc8sxdu2 in H introduces
correlations between the electric field in neighboring posi-
tions in the cavity, counteracting the tendency of the satu-
rable absorption to concentrate the power in an increasingly
thinner interval; the spectral filtering introduces a length
scale over which the electric field is smooth. The essence of
this behavior is captured by assuming that the electric field
envelopec is constant on an interval of size comparable with
the correlation length, while neglecting all correlations be-
tweenc in different intervals. The functionc is then repre-
sented on each interval by a single(complex) degree of free-
dom (see Fig. 1).

Taking N such intervals we find that the functionalH is
replaced by

H̃Nsc1, . . . ,cNd = −
gsL

2N
o
n=1

N

ucnu4 − LUsPd s11d

and the intracavity power is expressed by

P =
1

No
n

ucnu2. s12d

Furthermore, the conclusions of Sec. II B continue to hold

with H replaced byH̃, and the partition function becomes

Z̃N =Ep
n

dcn dcn
*

2p
e−H̃Nfcg/sLTd. s13d

The statistical mechanics problem defined by Eqs.(11)–(13)
is the main object of study in this paper. At zero temperature,
which corresponds to noiseless dynamics, the quartic term in

H̃ pushes all the available power into a single degree of
freedom(whose identity depends on the initial conditions).
This is the mode-locked state. In the opposite situation of
high T or gs=0 the power is randomly distributed, and mode
locking is absent.

While the coarse-grained model described in this section
is admittedly somewhat artificial, it is an important object of
study as it provides the simplest example of a system in
which the phenomenon of passive mode-lockingtransition
occurs. In this sense it plays in the theory of passively mode-
locked laser a role similar to the one of the Ising model in
equilibrium statistical mechanics: It is a theoretical labora-
tory which does not quantitatively approximate any real sys-
tem, but exhibits in a mathematically simple setting the cor-
rect phenomenology of actual experiments.

D. The thermodynamic limit

Our analysis relies crucially onN being very large. In the
way we stated the problem,N is the ratio between the laser
cavity length and the width of a pulse. In short-pulse laser
this is a natural large parameter, with values ranging from
102 to 109 depending on the cavity lengthL and the band-
width. TakingN→` and expanding in 1/N looks therefore
promising.

In order to follow such a procedure, a model that has a
well-definedN→` limit is required. In particular, thermody-
namic averages of physical quantities should have a finite
N→` limit. It is not difficult to see, however, that this does
not hold in the statistical mechanics system of Eqs.
(11)–(13). For example, theT=0 value of the intracavity
powerP is the minimum of

− 1
2gsNLP2 − LUsPd s14d

with respect toP, which naively diverges withN.
In a given physical system whereN is finite and fixed, this

does not constitute a problem. However, here, for the pur-
pose of theoretical analysis, we wish to approximate the
large but finiteN model by afictitious model for whichN
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→`. From Eq.(14) it is evident that this fictitious model is
not simply theN→` limit of the model defined by Eqs.
(11)–(13).

If in Eq. (11) and hence also in Eq.(14) we make the
replacement

UsPd → NTusPd, s15d

we obtain a model whereP, and other quantities as ex-
plained below, have a finite thermodynamic limit. Anactual
system with givenN, UsPd, andT is well-approximated by
the limit system withusPd=UsPd / sNTd.

A renormalization of the system parameters such as the
one presented here is quite often necessary in problems of
statistical mechanics in order to obtain finite results in the
thermodynamic limit, and the meaning and practical use of
renormalization in the general context is well understood
[22].

However, a more fundamental difficulty remains: Due to
the nature of the mode-locking transition, the ratio of the
peak power, the maximal value ofucnu2, to the intracavity
power diverges likeN whenN is large. This means that only
one of these quantities can achieve a finite well-defined ther-
modynamic limit.

In the renormalization scheme of Eq.(15), which is used
in the present paper(as well as in Ref.[14]), the intracavity
powerP and the phase transition “temperature” reach a well-
defined limit asN→`, while the peak power diverges lin-
early in N. A natural order parameter is therefore

M = S 1

N2o
n

kucnu4lD1/4

, s16d

wherek l stands for expectation with respect to the invariant
measure. In the ordered phaseM has a finite nonzero ther-
modynamic limit, and in the disordered phaseM tends to
zero asN→`.

E. Fixed power ensemble

Since the quartic term in the HamiltonianH̃ is unbounded
from below, the gain saturation termUsPd is essential to
ensure stability, preventing the system from cascading into

states with arbitrarily lowH̃. This reflects the well-known
fact that lasers owe their stability to gain saturation[18,19].
This is analogous to the role of the chemical potential in the
grand-canonical ensemble in standard statistical mechanics,
which limits the number of particles in the system.

An alternative approach is to suppose that the intracavity
power P has afixed value P, whose analogue in textbook
statistical mechanics is the canonical ensemble where the
number of particles is fixed. This is the scheme used in Ref.
[14]. One of the main results of the present work is an
equivalence of ensembles. The thermodynamics obtained in
the fixed- and variable-power ensembles are equivalent. The
variable-power ensemble must be used ifkPl is not known.
These issues are discussed in Sec. V.

In the fixed power ensemble there is no need to include
the gain saturation term, and the partition function is defined
by

ZNsgs,T,Pd =Ep
n

dcn dcn
*

2p
e−HNfcg/TdsPfcg − Pd, s17d

with the reduced Hamiltonian

HNfcg = −
gs

2N
o
n=1

N

ucnu4. s18d

The change of variablesyn= ucnu2 in Eq. (17) leads to the
simpler form

ZNsgs,T,Pd =Ep
n

dyn esgs/2NTdonyn
2
dS 1

N
o
n=1

N

yn − PD ,

s19d

where theyn integrations are from 0 tò . Another change of
variablesyn→Pyn leads to the useful scaling relation

ZNsgs,T,Pd = PN−1ZNsgsP
2/Td, s20d

where

ZNsgd ; ZNsg,1,1d.

An important conclusion has already been reached: The ther-
modynamics depends on the single parameterg;gsP

2/T.
Equation(20) proves this in the fixed power scheme, while
the equivalence of ensembles extends this to the general
case.

In the rest of this paper we solve the statistical mechanics
problem of the coarse grained mode. First, in Sec. III a mean
field theory is developed for the fixed-power ensemble,
which is later shown to be exact in the thermodynamic limit.
Then, in Sec. IV we solve the statistical mechanics problem,
still in the fixed-power ensemble, by developing a uniform
asymptotic expansion ofZN in inverse powers ofN. Finally,
using the results of Sec. IV we calculate the partition func-
tion also in the variable-power ensemble in Sec. V, which
completes the solution of the coarse-grained model.

III. MEAN FIELD THEORY

The free energy in the coarse-grained model lends itself to
a mean field analysis when formulated in Fourier(mode)
space. In Fourier representation mode-locking manifests as
ordering of the phases of the various modes, see Fig 1. In-
troducing the discrete Fourier transform

cn = o
m=1

N

ame2pim sn/Nd s21d

the Hamiltonian(18) is expressed in terms of Fourier modes
by

Hfag = −
gs

2 o
m1−m2+m3−m4=pN

am1

* am2
am3

* am4
, s22d

where p is an integer(whose only possible values arep
=−1,0,1,sincem1, . . . ,m4 are between 1 andN). P is now
given by
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P = o
m

uamu2. s23d

The main disadvantage of the Fourier space formulation is
that the nonlinear term becomes complicated and nonlocal.
Mean field theory overcomes this difficulty by assuming that
the different modes are uncorrelated and characterized by a
common probability distribution functionrmfsad. When the
problem is formulated in Fourier space, the mean field ap-
proximation is quite plausible, since the interaction term in-
volves all the degrees of freedom.

In the mean field framework the free energy per degree of
freedom is

F ; −
log Z

N
= −

gs

2T
N2ukalmfu4 + klog rlmf, s24d

wherek lmf stands for expectation value with respect tormf.
Gain saturation is included by demanding that

kuau2lmf =
P

N
, s25d

i.e., kPlmf=P. This is not enough in itself to satisfy the con-
straint of fixed power, sinceP fluctuates. However, in the
thermodynamic limit, which is always necessary for the va-
lidity of the mean field approximation, the fluctuations tend
to zero, and Eq.(25) is justified.

Following the standard procedure of mean field calcula-
tions[22], rmf is found by minimizing the free energy subject
to the constraint, Eq.(25). A necessary condition for the
minimization ofF is stationarity with respect to variations of
r,

0 =
d

drsad
fF + lskuau2l − P/Ndg

= − 2 Resgs/TdN2ukalu2ka*la + flog rsad + 1g + luau2,

s26d

wherel is a Lagrange multiplier. The solution of Eq.(26) is
a Gaussian probability distribution function

rsad =
1

ps2e−sua−kalu2d/s2
. s27d

kal ands are related by Eq.(25) which implies

kuau2lmf = ukalmfu2 + s2 =
P

N
. s28d

rmf is therefore characterized by the single parameterM
=ÎN/Pu kalmfu. From Eq.(28) one can see that 0ø uMu2ø1.
WhenM =0 the phases of the modes are completely random,
which means that in real space the power is uniformly dis-
tributed. WhenM .0 the modes are correlated which in real
space means that a macroscopic fraction of the power resides
in the variablecN. M is therefore an order parameter, which
can be shown to asymptotically coincide with the previous
definition of the order parameter Eq.(16).

We note that although the present formulation of mean
field theory allows only for pulse formation at a specific

point in the cavity, because it assumes that the mode vari-
ables am are identically distributed, the mean field theory
yields the correct thermodynamics. The reason is that inclu-
sion of ordered configurations with different pulse positions
would contribute a term ofOslog Nd to the entropy, which is
negligible in the thermodynamic limit, where the entropy is
OsNd.

We proceed to define a new thermodynamic potential
fsg ,yd, wherey=M2 and g=gsP

2/T, which is the free en-
ergy for a given valueM. Using Eqs.(27) and (28) in Eq.
(24) it is found that

fsg,yd = − Sg

2
y2 + logs1 − ydD , s29d

up to unimportant additive terms independent ofg and M.
The free energyF for a giveng is the global minimum of
fsg , ·d, and the abscissa of the minimum,ȳ, is the square of
the order parameter.

The function f of Eq. (29) has a single minimum forg
ø4, aty0=0. The vanishing ofM means that the phases are
not locked corresponding to the disordered, non-mode-
locked phase. Forg.4 there exists an additional(local)
minimum,y1.0, see Fig. 2, which corresponds to the mode-
locked state. However, for 4øgøg* .4.91
fsg ,y1d. fsg ,y0d, which means that the mode-locked state is
metastable, and the true equilibrium is still disordered,ȳ
=y0. At g=g* the two minima exchange stability, and for all
g.g* the equilibrium state is mode locked, withÎy1 as the
value of the order parameter.g* is the solution of the equa-
tion fsg ,y0d= f(g ,y1sgd),

sÎg* + Îg* − 4d2

8
= log

Îg*sÎg* + Îg* − 4d
2

. s30d

In terms of the original variablesgs, T, andP, the phase
transition point is therefore

gsP
2

T
= g* < 4.91. s31d

In order to compare it to the result in Ref.[14], one should
remember the difference in the modeling of spectral filtering
here and there. In Ref.[14] we imposed “Dirichlet” bound-
ary conditions in the Fourier space, while here, the coarse
graining method actually induces periodic boundary con-

FIG. 2. The thermodynamic potentialfsg ,yd as a function of
y=M2 for several values ofg ranging from 2 to 6 with higher
values ofg corresponding to lower curves. Curves with two(local)
minima correspond to systems with a metastable state. The critical
g sg*d is by definition the one where the values offsg ·d at the two
minima are equal, which implies a first order phase transition.
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sitions in Fourier space. Since the interaction in Fourier
space is long ranged, this leads to a difference. The Hamil-
tonian in Ref.[14] was identical to Eq.(22), except thatp
=0 only. The number of quartets withk=0 is 2/3 of their
number with p=−1,0,1. In themean field approximation
this would simply lead to a factor of 3/2 in the transition
temperature,

gsP
2

T
=

3

2
g* < 7.4. s32d

This is very close to the result ofgsP
2/T<7.7 obtained in

Ref. [14]. (We note that the mode-locking transition was
specified in Ref.[14] in terms of 1/g.) The mean field theory
presented here is better, since here we do not make the ansatz
of separating the modulus and angle inrmf. Here we also end
up with the simple analytical expression(29). Since the
Hamiltonian (22) is translation invariant in Fourier space,
mean field theory is more suitable for its analysis than for
that of its counterpart from Ref.[14].

In summary, it has been demonstrated in the mean field
context that the mode locking transition is a standard first
order transition, accompanied by coexistence and metastable
configurations in its neighborhood. The mean field theory
involves an uncontrolled approximation, which is hard to
justify rigorously. In the present work the justification will
ultimately follow from the real space analysis given in the
next section.

Evidently, the transition condition depends, although not
greatly, on the spectral filtering scheme. Analysis of the para-
bolic filtering scheme, which we do not pursue here, yields
yet another value for the transition temperature, close to(31)
and (32).

IV. FIXED POWER FINITE N ANALYSIS

In this section we calculate an asymptotic expansion of
the partition functionZNsg ,Pd in decreasing powers ofN, the
number of degrees of freedom. All information pertaining to
the passive mode-locking transition is then obtainable in a
standard manner. In particular, we show that the mean field
calculations give the exact free energy.

Our starting point is a recursive version of Eq.(19) for
ZN, obtained by performing onlyN−1 of they integrations,

ZNsgs,T,Pd =E dyN esgs/2NTdyN
2
ZN−1

3SN − 1

N
gs,T,

N − yN

N − 1
PD . s33d

After using the scaling relation Eq.(20) and making a
change of the integration variable we obtain a recursive
equation forZ,

ZNsgd = NS N

N − 1
DN−1E

0

1

dy esg/2dNy2

3s1 − ydN−2ZN−1Sg
N

N − 1
s1 − yd2D . s34d

This is the fundamental equation of the real space analysis.

We will show that whenN is large the only significant
contribution to they integration in Eq.(34) comes from the
vicinity of one or two values ofy which maximize the inte-
grand, one of which isy0=0. The integration on other parts
of the interval is exponentially small inN and will be ne-
glected. The case of a single maximizing point will be shown
to correspond to invariant measures concentrated on configu-
rations where the amplitude of all degrees of freedom is
Os1d, i.e., non-mode-locked, disordered configurations. This
happens for small enoughg. When there are two maximizing
points the typical configurations are such that a finite fraction
of the power is concentrated in asingledegree of freedom,
while the amplitude of other degrees of freedom is again
Os1d. These mode-locked configurations arise for large
enough values ofg. We show that these are the only two
possibilities.

A. The disordered phase

We first tackle the case of smallg. To this end we use the
Fourier representation of the delta function in Eq.(19) to
re-expressZ by

ZNsgd =E
−i`

i` dz

2pi
e−zSE

0

CN

dy esg/2Ndy2+s1/NdzyDN

. s35d

for someCNùN. As long asCNùN, the right-hand side of
Eq. (35) is independent ofCN. One can now expand the
quadratic term in the exponential in a Taylor series keeping
the first two terms, carry out they integration, and then take
CN→` giving

ZNsgd , E dz

2pi
e−zS−

N

z
−

gN2

z3 DN

. s36d

The contour of integration must be deformed so as to avoid
the singularity atz=0. A standard argument shows that the
contour should be moved to the left so that it crosses the real
line at a negative value. The integral(36) can then be calcu-
lated by pushing the contour through the singularity atz=0
and then to Rez=`. The exponential in the integrand makes
the integration at infinity vanish in the limit, leaving only
integration on a contour surroundingz=0 clockwise. Using
Cauchy’s theorem this evaluates to

ZNsgd , NNR dz

2pi
e−zo

n
SN

n
D sgNdn

s− zdN+2n

= o
n

gnNN+nN!

n ! sN − nd ! sN + 2nd!
, s37d

or, using Stirling’s formula,

ZNsgd ,
eN

Î2pN
o

n

gn

n!
= eg eN

Î2pN
; ZN

s0dsgd. s38d

ZN
s0d certainly provides an asymptotic approximation of

ZNsgd asg→0, but we shall show that it also serves as the
leading term ofZNsgd as N→` for all 0øg,g* . This is
achieved by showing that the recursive equation(34),
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ZN
s0dsgd , NeE dyesg/2dNy2

s1 − ydN−2ZN−1
„0d sgs1 − y…2d

= N
eN

Î2pN
E

0

`

dy
egs1 − yd2

s1 − yd2eNfsg/2dy2+logs1−ydg s39d

holds for g in this interval. Here and below the symbol
, stands for asymptotic for largeN. Consider the last inte-
gral. WhenN→` the integrand becomes strongly peaked
near the global minimumȳsgd of fsg ,yd=−fsg /2dy2+ logs1
−ydg. The functionf is precisely the thermodynamic poten-
tial encountered in the context of the mean field approxima-
tion, see Eq.(29). As shown above(Sec. III), ȳsgd=y0;0
for g,g* . For these values ofg only the neighborhood of
y=0 must be taken into account and the integral on the right-
hand side of Eq.(39) is approximately

Neg eN

Î2pN
E

0

1

dy s1 − ydN−2 , eg eN

Î2pN
, ZN

s0d, s40d

which establishes

ZNsgd , ZN
s0dsgd, g , g* . s41d

The thermodynamics now follow straightforwardly. For ex-
ample, the free energy per degree of freedom isFsgd
=s1/Ndlog ZN,1, independent ofg to leading order, and
the expectation value ofucu4 in the invariant measure is

kucu4l = 2
ZN8 sgd
ZNsgd

, 2 sg , g*d, s42d

also independent ofg in the leading order. In particular, the
order parameterM from Eq. (16) equals zero, showing that
this is indeed a disordered configuration.

B. The mode-locked phase

We turn now to the caseg.g* , whereȳ=y1.0. We can
no longer expect thatZN,ZN

s0d, but the mean field calcula-
tions suggest that

ZNsgd , ANsgde−NFsgd, s43d

where Fsgd= f(g , ȳsgd)−1 and AN is subexponential inN.
The results of the preceding section imply that the
asymptotic form(43) is valid for g,g* , since thenȳ=y0,
andF=−1. Using Eq.(34) for g.g* , we presently show that
Eq. (43) is valid for all gÞg* and find explicit expressions
for AN.

Substituting Eq.(43) in Eq. (34) gives the asymptotic
equation

ANsgde−NFsgd , NeE dy
esg/2dy2

1 − y
AN−1fgs1 − yd2g

3e−sN−1dffsg,yd+F„gs1 − yd2…g. s44d

As before, the integration is concentrated near the maximal
points of the large exponential, i.e., the minima(as a function
of y) of fsg ,yd+Ffgs1−yd2g. Recalling the definition ofF
the minimization problem turns into

min
y

fsg,yd + Ffgs1 − y2dg = min
y,w̃

− gy2 − logs1 − yd − gs1

− yd2w̃2 − logs1 − w̃d

= min
y,w

−
g

2
sy2 + w2d + logs1 − y

− wd, s45d

where we have setw=w̃s1−yd. It is straightforward to check
that eithery or w must vanish at the minimum. Forg.g*

there are two possibilities,y=y1sgd ,w=0, and y=0,w
=y1sgd, and the minimal value is the same in both cases.

The conclusion is that the integration receives two main
contributions, one from the neighborhood ofy=0, and one
from the neighborhood ofy= ȳ, which we denote byI0 and
I1, respectively.I0 is found by approximating the exponential
neary=0 and evaluating prefactors aty=0 giving

I0 , NeAN−1sgde−sN−1dFsgdE
0

1

dy s1 − ydN−2e2sN−1dF8sgdy

,
eFsgd+1

1 − 2F18sgd
ANsgde−NFsgd; s46d

the assumption thatAN is subexponential inN was used to
approximateAN−1,AN.

For the calculation ofI1 we need to evaluateF neargf1
− ȳsgdg2. It follows from the properties off that this is always
strictly less thang* , whereF;−1. Therefore

I1 ,
ÎNegs1 − ȳd2

Î2ps1 − ȳd2
eNFsgdE

−`

`

dy esN−1dFs2dsgdfsy − ȳd2/2g

,
egs1 − ȳd2

s1 − ȳd2ÎFs2dsgd
e−NFsgd, s47d

where Fs2dsgd=]y
2f(g , ȳsgd). Combining these results with

Eq. (44), we get a linear equation forAN whose solution is

ANsgd =
egs1 − ȳd2

s1 − ȳd2ÎFs2d

1 − 2F8sgd
1 − 2F8sgd − eFsgd+1,

g . g* . s48d

This establishes Eq.(43), with explicit values forAN for all
gÞg* .

We find now thatFsgd is indeed the free energy, consis-
tently with the mean field theory. Since

kucu4l , 2slog ZNd8sgd = 2
A8sgd
Asgd

− 2NF8sgd, s49d

the order parameterM =(2F8sgd)1/4 is nonzero forg.g* ,
showing that mode locking occurs for suchg. Using the
definition of F we can calculate explicitly

− 2F8sgd = −
d

dg
f„g,ȳsgd… = − ]gf„g,ȳsgd… = ȳ2, s50d

sincef is by definition stationary with respect toy at ȳ. This
means thatM =Îȳ, also in accordance with the mean field
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calculations. It is possible to show by calculating higher mo-
ments thatM2 is the power concentrated in asingledegree of
freedom. This result, which in physical terms means that
mode-locking results in a single pulse, can be traced to the
fact that the integral in Eq.(44) receives contributions only
from y0 andy1.

C. The transition region

The analysis of the preceding section does not apply to
the case whereg is precisely equal tog* . For example, Eq.
(48) would imply thatANsg*d is infinite, since the derivative
in F8sgd should be taken from below. More importantly, the
asymptotic approximation Eq.(43) is not uniform inN near
g* , because it neglects the contribution of the metastable
state. An asymptotic approximation forZ which is valid and
uniform for all g is

ZNsgd , eg eN

Î2pN
+ AN

* sgde−NF* sgd, s51d

whereF*sgd= f(g ,y1sgd), andAN
* is given by Eq.(48) replac-

ing everywhereF by F* and ȳ by y1. The uniform approxi-
mation is acontinuousfunction of g which reduces to the
nonuniform approximation forug−g* u @1/N.

Observables in systems with a finite number of degrees of
freedom exhibit crossover behavior in the mode-locking
transition, rather than the sharp, discontinuous dependence
on parameters predicted in the thermodynamic limit. When
the number of degrees of freedom is not too large, the cross-
over is measurable and describable by the uniform approxi-
mation. For example,

kucu4l , 2faNsgd + NbNsgdy1sgd2g, s52d

where

aN =

eg eN

Î2pN
+ sAN

* d8sgde−NF* sgd

eg eN

Î2pN
+ AN

* e−NF* sgd
s53d

and

bN =
AN

* sgde−NF* sgd

eg eN

Î2pN
+ AN

* e−NF* sgd
. s54d

For moderate values ofN, there is a significant interval ing
below the transition wherekucu4l is much larger than its
value in the thermodynamic limit. A comparison between the
uniform and nonuniform approximations tokucu4l is shown
in Fig. 3.

V. THERMODYNAMICS WITH VARIABLE TOTAL
POWER

In the preceding section we developed a systematic ap-
proximation scheme for the partition functionZ of the pas-
sive mode-locking model as a function of the nonlinearity

strengthgs, the fixed total intracavity powerP, and the tem-
peratureT. This allowed us to calculate the free energy per
degree of freedom, and we found that mode locking occurs
whenevergsP

2/T is greater than a critical valueg* .
However, in experimental situations the intracavity power

P is not fixed in advance. Rather it is a fluctuating quantity,
whose mean valueP is determined by the saturable gain
function U [see Eq.(11)]. The relation between the thermo-
dynamics in the fixed-power ensemble analyzed above, and
the variable-power ensemble which is the subject of this sec-
tion is quite similar to the one between the canonical and
grand canonical ensembles in statistical mechanics[23]. In
the latter case one defines the grand potentialV=mN−F,
where m=]F /]N is the chemical potential. An equivalent
thermodynamics is obtained after replacing the extensive
variableN, by the intensive variablem. Finite size correc-
tions to the thermodynamics in the two ensembles are also
related, but not equivalent.

In this section we show in a similar spirit that thermody-
namics with fixed and variable power is equivalent, and cal-
culate the thermodynamic limit ofP;kPl in the variable
power case. It is quite straightforward to generalize the cal-
culations and to obtain subleading terms as in Sec. IV, but
this is not pursued here.

In the fixed power ensemble the free energy per degree of

freedomF̃ of the HamiltonianH̃N which includes the satu-
rable gain is related to the free energyF calculated in Sec. IV
by

F̃sgs,T,Pd = FsgsP
2/Td + log P + usPd. s55d

[Refer to Eqs.(11) and(15) for the relevant definitions.] We
now define the variable-power thermodynamic potentialF as

the Legendre transform ofF̃,

Fsgs,T,md = min
P

mP − F̃sgs,T,Pd. s56d

The functionu has to grow faster thanP2 to ensure that the
minimum in Eq.(56) is finite. We also require thatu is con-
vex to obtain a unique minimum. Otherwiseu is arbitrary.

The thermodynamics is obtained fromF through the
properties of the Legendre transform, the case of interest
beingm=0. The mean power,

FIG. 3. A comparison between the value of the order parameter
in the uniform(full line) and the nonuniform(broken line) approxi-
mation as a function of the nonlinearity parameterg for a system
with N=150 degrees of freedom. The nonuniform approximation
breaks down near the transition pointg* .
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P = ]mFsgs,T,0d, s57d

can be found from the definition Eq.(56) and the results of
the preceding section; it is given implicitly by

1 + Pu8sPd − gȳsgd2 = 0, s58d

where as beforeg=gsP
2/T. The order parameter is

M4 = 2T]gs
F = − 2T]gs

F̃ = − P2F8sgd = P2ȳsgd2, s59d

which, for a given mean powerP, is independentof the form
of u, and therefore also equal to the order parameter in the
fixed power ensemble. Moreover, the thermodynamics de-
pends on the single parameterg. A special case is the mode-
locking transition point, which occurs atg=g* whatever the
form of the saturable gain function. This universal behavior
stems from the thermodynamic equivalence of the fixed
power and variable power ensembles.

Another interesting thermodynamic quantity which can be
studied only in the variable power framework is the suscep-
tibility x=P8sgd which measures the response of the intrac-
avity power to changes in the strength of the nonlinearity or
inverse noise power. Taking the derivative of Eq.(58) shows
that

x =
fgȳsgd2g8
fPu8sPdg8

. s60d

In the non-mode-locked regimeP is independent ofg and
x=0; when ȳ.0 and mode-locking occurs,ȳ8sgd is also
positive and it follows from the convexity ofu that the sus-
ceptibility is strictly positive in mode-locked systems.
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