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Statistical-mechanics theory of active mode locking with noise
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Actively mode-locked lasers with noise are studied employing statistical mechanics. A mapping of the system
to the spherical model (related to the Ising model) of ferromagnets in one dimension that has an exact solution
is established. It gives basic features, such as analytical expressions for the correlation function between
modes, and the widths and shapes of the pulses [different from the Kuizenga–Siegman expression; IEEE J.
Quantum Electron. QE-6, 803 (1970)] and reveals the susceptibility to noise of mode ordering compared with
passive mode locking. © 2004 Optical Society of America
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Many mode lasers can operate in two basic regimes:
mode locked and not mode locked, where “mode locked”
means that the phases of the different axial modes are
aligned with one another. When the modes are locked
the laser produces pulses. To give rise to such an
alignment, interaction between the modes is required.
Interaction can be present either as a result of driving
(modulation) or by nonlinearity. These indeed are the
two classes of technique that are used for mode locking:
active and passive, respectively.

There are several other differences between the ac-
tive and the passive techniques. The latter are known
to be capable of producing shorter pulses. This fact
is usually attributed to the Kuizenga–Siegman1 theo-
rem of the duration of an actively mode-locked pulse.
They give a limit on the pulse width that stems from
the balance between production of sidebands by modu-
lation (coinciding with the axial modes) and attenu-
ation of the sidebands by the f iltering action of the
laser medium. This limitation indicates some sort of
fragility of the active mode-locking process. During
each round trip the modulator builds only a small num-
ber of neighboring sidebands about every mode. For
the sidebands to reach from a mode, say, at the middle
of the band to its edges, a large number of round trips
is needed, and meanwhile losses suppress the modes at
the edge.

The fragility of active mode locking lies at the
heart of this Letter. We consider susceptibility to
something other than losses, i.e., to noise. In the
frequency (mode) domain when noise is present, each
time sidebands are produced by the modulation, noise
slightly alters them. Because these noise-induced er-
rors accumulate as the modulation propagates across
the band, correlation across the spectrum cannot be
maintained beyond a certain distance, which is de-
termined by the modulation strength and the level of
noise. As only statistically correlated modes can add
constructively to a pulse, the width of the pulses will
be inversely proportional to this spectral correlation
length rather than to the spectral width.

Here we follow a statistical-mechanics approach to
the study of many interacting modes (our particles) in
a passive mode-locked laser system with noise2– 4 and
apply it to the active case. First we show that the
distribution of the mode amplitudes in active mode
locking is exactly given by a Gibbs-like distribution,
as we found for the passive case. This opens the
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way for employing the mature and sophisticated tools
of equilibrium statistical mechanics. Then we show
an exact mapping of the actively mode-locked laser
onto the spherical (or the infinite spin dimensionality)
model of ferromagnets,5,6 which models a ferromagnet
as a system of nearest-neighbor interacting spins
and is a slight modification of the better-known
Ising model. These magnetic systems have an exact
solution in one dimension. In the case of the laser,
spins are replaced by mode phasors; interaction by
modulation, which induces the formation of neigh-
boring sidebands (modes); and temperature by noise.
Then we immediately have a complete description
of the mode system’s behavior by means of an exact
mathematical solution of the one-dimensional spin
system. It gives, for example, expressions for the
noise-dependent correlation between modes, and the
average shape and width of the pulses.

With the statistical-mechanics approach the dif-
ference between active and passive mode locking
is obvious. It is embedded in the range of the
interaction between modes. For the short-range
interaction of the active case, as the modulation
strength (interaction) becomes weaker compared with
noise (temperature), the correlation length becomes
shorter, the islands (clusters) within which modes
can coherently add up to a pulse become smaller, and
the pulse becomes wider (see Fig. 1). Here a phase
transition to a fully ordered state (magnetization)
occurs in principle only at zero noise (because the
number of modes is f inite, this picture is precise
when the spectral correlation length is shorter than
the finite bandwidth). The fragility of active mode
locking then becomes simply another instance of the
well-known lack of magnetization (overall ordering) of
one-dimensional short-range-interacting spin systems:
Any weak noise (temperature) in the mode system
can easily break a bond between neighboring modes,
thus eliminating overall mode ordering. In contrast,
the long-range interaction in passive mode locking
by four-wave mixing in the saturable absorber im-
poses overall order below a certain noise level (with
only slight perturbations owing to noise7) and com-
plete disorder above it, resulting in the threshold
behavior of the passive mode locking: As all modes
interact almost equally with all others, once the
interaction through the many mode–mode bonds is
strong enough to overcome noise it induces correlation
© 2004 Optical Society of America
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Fig. 1. Axial mode system in the frequency (n) domain,
where the arrows describe the mode amplitudes and phases
(phasors) and the corresponding one-period light-intensity
profiles in the time domain (tR is the cavity round-trip
time). Note the resemblance to the magnetic spin system,
where the arrows describe spins. The traces at the right
are given for various ordering levels, from (top to bottom)
complete disorder, through partial order with a finite cor-
relation length, to a highly ordered and then to a com-
pletely ordered state. The degree of order is determined
by AP0�W .

all over the band. All the modes in the band stay to-
gether and all can be ordered, leading to a sharp noise-
induced threshold behavior with a clear separation
between locked and unlocked thermodynamic phases.2

The spin–spin correlation function is one of the
most interesting aspects of phase transition theory,
because it is directly measurable by, for example, neu-
tron scattering experiments. It turns out that this
function is also most simply measured for lasers: The
Fourier transform of the mode–mode correlation is the
average intensity profile of the pulses at the output of
the laser. Using this correlation function, we compute
the average intensity profile and in particular the
pulse width as a function of the noise-to-signal ratio
and the modulation strength. We shall show that,
for long lasers, even quantum noise can impose a
lower limit on the pulse width that may dominate the
Kuizenga–Siegman limit.

The laser system that we consider consists of an
amplitude modulator, a slow (compared with the laser
round-trip time) saturable amplifier, and a spectral f il-
ter. Here we consider a rectangular profile of spectral
filtering: f lat within some band and rapidly dropping
to infinite loss outside. Another commonly made ap-
proximation for the gain profile is parabolic, a condi-
tion that we do not treat further here. The equation
of motion then takes the form

�am � �A�2� �am21 1 am11� 1 �g�P � 2 l�am 1 Gm , (1)

where am are the complex amplitudes of the axial
modes of the laser. The electric field is expanded to
its spatial Fourier components am at every instant, so
each am is a function of time. �am denotes the temporal
derivative of am. P �

P
m amam

� is (proportional to)
the instantaneous total intracavity power. Although
the precise form of gain saturation function g�P � is
immaterial to our calculation as long as it is slow,
we take the common g�P � � g0��1 1 P �Psat� model,
where g0 and Psat characterize the small-signal gain
and the saturation power of the amplif ier, respectively,
l is the total intracavity loss, and A is the modula-
tion strength. Different interpretations exist that
lead to an equation of the same structure.8 Gm is a
complex white Gaussian-noise term, which represents
spontaneous emission noise or otherwise satisfies
�Gm�t1�Gn

��t2�� � 2Tdmnd�t1 2 t2�, where the constant
T characterizes the power of the noise and � � denotes
an ensemble average. We assume that the amplif ier
supports N modes, a1 . . .aN , and for convenience we
induce periodic boundary conditions. This means
that in Eq. (1) for m � 1 and m � N we have aN and
a1 instead of a0 and aN11, respectively. Because of
the short-range interaction induced by the modulator,
such a change in the boundary condition will not affect
the system. Defining

HI � 2
A
2

J 2 g0Psat ln�Psat 1 P � 1 lP ,

J �
X
m

�amam11
� 1 am

�am11� , (2)

one can rewrite Eq. (1) as

�am � 2
≠HI

≠am
� 1 Gm , �am

� � 2
≠HI

≠am
1 Gm

�.

Similarly to what was reported in Ref. 2, the latter
equation can be split into a real part and an imagi-
nary part to better reveal that the equations satisfy the
potential condition.9 The steady-state distribution of
the a’s is therefore

r�a1, . . .aN � ~ exp
µ
2
HI

T

∂

� exp
∑
g0Psat ln�Psat 1 P � 2 lP

T

∏

3 exp
µ
AJ
2T

∂
. (3)

This is a central result, rigorously showing that our
mode system obeys Gibbs-like statistics (as we have
shown for passive mode locking2 – 4). Here HI and T
play the role of the Hamiltonian and temperature, re-
spectively, in statistical mechanics.

We perform our statistical-mechanics analysis in the
thermodynamic limit, i.e., when the number of modes
approaches infinity. In fact, 50–100 modes already
make the system large, as long as the restriction made
in inequality (8) below on the correlation length is ful-
filled. We assume that, although the number of modes
increases, intracavity power P and the total power of
noise W � 2NT remain constant.

It is evident from relation (3) that the term
exp�AJ �2T � provides the interaction between the
modes that is due to modulation, whereas the other
term on the right-hand side of relation (3) stabilizes



1024 OPTICS LETTERS / Vol. 29, No. 9 / May 1, 2004
Fig. 2. Average pulse intensity profiles [Eq. (9)], showing
one period, for various correlation lengths.

power P about some constant value, roughly equal
to P0 � Psat�g0�l 2 1�. Here we claim, as we did in
Refs. 2–4, that the details of this stabilizing mecha-
nism are immaterial as long as the gain saturation
remains slow, and it can be replaced by the con-
straint P � P0. Anyway, in the thermodynamic limit
exp��g0Psat ln�Psat 1 P � 2 lP ��T 	 approaches (up to
a coefficient) d�P 2 P0�. We therefore approximate
distribution (3) by

r�a1, . . .aN � ~ d�P 2 P0�exp
µ
ANJ

W

∂
. (4)

Relation (4) establishes the mapping of actively mode-
locked lasers to the spherical model of ferromagnets.5

To see this, we define ãm �
p
NP0 am, and in terms

of ãm relation (4) is exactly the distribution given in
Ref. 5 for one dimension, except that the spins (modes)
are complex rather than real. For real spins the spin
correlation function in the one-dimensional spherical
model is given, for example, in Ref. 10. Repeating the
calculation in Ref. 5 with complex spins, one can find
the same result apart from a factor of 2: For com-
plex spins the interaction coefficient is effectively twice
weaker. This correlation function is exponentially de-
caying and has the form

�akak1n
�� �

P0

N

Ω
2AP0�W

1 1 �1 1 �2AP0�W �2�1�2

æn
. (5)

For lasers the case of interest occurs when noise has a
much smaller magnitude than the signal, W ,, AP0,
in which case Eq. (5) simplifies to yield

�akak1n
�� 


P0

N

µ
1 2

W
2AP0

∂n



P0

N
exp

µ
2nW
2AP0

∂
. (6)

Relation (6) reveals the average mode cluster size (the
correlation length):

Ncor �
2AP0

W
. (7)

We can now identify the two possible operation regimes
of the system: In the f irst, the correlation length is
larger than the total size of the spectrum; in other
words, all the modes in the spectrum are correlated.
When Ncor .. N , that is, when W ,, AP0�N , the the-
ory reduces to the noiseless case. The other variation,
the target of our present study, is Ncor , N :

W . 2AP0�N . (8)

The average intensity of the electric f ield in the laser
is then given by

�jc�t�j2� �
X
m,n

�aman
��exp�2pi�m 2 n�t�tR �

�
P0

�1 1 �2AP0�W �2�1�2 2 2AP0 cos�2pt�tR��W
, (9)

where c�t� �
P

am exp�2pimt�tR� is the slowly vary-
ing amplitude of the electric field, tR is the cavity
round-trip time, and Eq. (5) has been used. This is
a Lorenzian profile (see Fig. 2). Its width (FWHM)
is t 
 tRW��2pAP0�. For the small-noise system
the intensity profile does not reduce in our model to
the well-known Gaussian profile, as our gain profile
is rectangular rather than parabolic. Therefore for
the noiseless case [the opposite of inequality (8)] the
waveform reduces to sin2�Npt�tR ��sin2�pt�tR�. The
width of this waveform is of the order of tR�N , de-
termined by the size of the band, whereas with noise,
in the regime of inequality (8), it is of the order of
tR�Ncor .

Finally, it is interesting to note that a small noise-to-
signal ratio can bring the system to a noise-dominated
condition [inequality (8)]: A noise-to-signal ratio of
1024, AtR � 0.05, and N . 103 modes are suff icient.
Such noise is plausible even for spontaneous emission,
and N . 103 is common for long-f iber lasers. There-
fore there are cases when quantum noise is enough to
reach the noise-dominated regime.
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