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Evolution of localization in frequency for modulated light
pulses in a recirculating fiber loop
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We present an experimental demonstration of the evolution of localization in frequency of light pulses that are
repeatedly kicked by phase modulation and then propagated along equally spaced lengths of fiber with weak
dispersion. The experiment was performed with a long fiber recirculating loop that allows us to follow the
pulse’s spectral changes after each cycle. © 2003 Optical Society of America
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amplitude approximation, satisfies a
ödinger-like equation, with a potential

the periodic modulation (kicks):
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umber of kicks, z� � z�z0 is the spa-
coordinate normalized to the length of
t is the internal time variable relative

to the center of the pulse and multiplied by modulation
frequency V, and g � 1/2b2z0V2. We do not include
absorption in Eq. (1), as it can be compensated for by
an amplif ier.

For weak dispersion, g ø p, we can write the
standard discrete time mapping for the optical kicked
rotor as
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where pN � 2gnN is the angular momentum, nN �
njz��N1 is the sideband number, TN � T jz��N1 , and
k � 2gA.

It can be seen that from Eqs. (2) we can obtain the
following relation for pN :

pN11 2 pN21 � 2k sin�TN 1 pN�2�cos�pN�2� . (3)

When pN is an odd product of p, the changes to p
cancel each other out, resulting in a classical barrier.
Otherwise, p is uniform (at resonance). We can find
the border between the uniform spectrum section and
the classical barrier by first approximating Eqs. (2)
naïvely:

pN � p0 2 Nk sinT0 2 1/2N2kp0 cosT0,

TN � T0 1 Np0 . (4)

This approximation is valid only when the following
assumptions hold:
Light pulses in a dispersive medium that undergo
repeated phase modulation upon propagation at equal
distances were shown to behave as quantum-kicked
rotors1 with localization properties in their frequency
domains. This behavior is related to Anderson lo-
calization for electrons in one-dimensional disordered
solids.2,3 The long-term localization behavior in
the kicked optical system was demonstrated with
mode-locked dispersive fiber lasers.4 These lasers
were shown to exhibit conf ined exponential spectra,
which are typical of localization, besides special reso-
nances (dispersion modes) in some regions. As in
many other cases, such experimental studies skip the
buildup step that commonly endures a few kicks and
is in general diff icult to follow. Study of this buildup
stage is our aim in the present research.

We present an experimental demonstration of the
evolution of localization in frequency of the optical
kicked rotor in dispersive single-mode fibers. The
experiment was performed with a long recirculating
fiber loop such that we could follow every round trip
of propagation of the light in the loop. The optical
system provides a unique opportunity to track the
buildup of localization, almost an impossible task in
the usual quantum-kicked rotor. This system also
provides the opportunity for following the buildup of
pulses in the time and frequency domains.

The localization received here occurs after propaga-
tion in a dispersive f iber of broad light pulses that are
repeatedly kicked by sinusoidal phase modulation at
equally spaced locations along the fiber. The naïve
expectation concerning the evolution of the spectrum
and the buildup of sidebands (harmonics) is that their
number will diffusively increase with the number of
kicks, such that the spectrum will continually broaden
with propagation. However, because of localization
the spectrum is confined, usually with an exponential
signature. The focus of this Letter is on the transition
between the broadening and the localization regimes
and on the number of kicks needed for it to occur.
The experiment was performed with a recirculating
fiber loop system that enabled the pulse to be tracked
after each round trip of the loop.

The electric-f ield amplitude c of a pulse that is
propagating in dispersive single-mode fibers, in the
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where N is the n
tial propagation
cavity z0, T � V
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Np0 ø p , (5)

Nk ø p0 . (6)

However, because of the dependence of the assump-
tions on N , after enough kicks the assumptions will
always fail. When inequality (6) fails first, relative
changes in p appear before T changes. If p can
change freely, then p0 is in the uniform spectrum
section. When inequality (5) fails first, the changes
in p are canceled before any relative changes occur;
thus p0 is in the classical barrier section. The border
between these sections is established when both of the
assumptions fail together, or 2gDn � p0 �

p
k. This

gives us the number of sidebands:

Dn �
q
A�g . (7)

When we combine inequalities (5) and (6) and require
that they fail together, we receive an approximation for
the number of kicks required for the transition from
spectral broadening to localization to occur:

N2k � 1 ) N �
q
1�k �

q
1�g . (8)

The experimental system, shown schematically in
Fig. 1, consisted of a recirculating loop composed of
an optical f iber, an erbium-doped fiber amplifier, a
LiNbO3 phase modulator, a chirped fiber Bragg grat-
ing, polarization controls, and an electro-optic switch
to control the input and output of the light in the loop.
The input to the system was a light pulse with a low
repetition rate obtained by a LiNbO3 amplitude modu-
lator. We used 3 km of dispersion-shifted f iber (DSF;
b2 � 1 ps2�km for l � 1550 nm). The purpose of us-
ing the filter was to minimize the possibility of the sys-
tem’s lasing and consisted of a circulator along with a
chirped fiber Bragg grating. The electro-optic switch
allowed the loop to be opened or closed; when the loop
was open, the input pulse entered the loop and the cir-
culating pulse exited the loop, and when the loop was
closed there was a broad pulse circulating in it.

For high dispersion (large g) localization occurs
almost immediately, so to observe the evolution as
opposed to the long-term behavior of localization we
operated near the resonance regime, where g ø 1.
The total dispersion of one round trip of the loop is
approximated as b2z0 � 212 ps2, determined by the
fiber and the chirp of the Bragg grating, leaving g
dependent only on the frequency. We require that
the phase modulation be synchronized to the phase
of the pulses propagating in the loop. Otherwise we
receive destructive interference among the different
modes, so no localization of the spectrum will occur.
In addition, operation at modulation frequencies that
correspond to the Talbot length or to fractions of the
Talbot length will result not in localization but rather
in good-quality pulses after mode locking is achieved.5

In Figs. 2 and 3 we present experimental results and
a numerical simulation for the evolution of the localiza-
tion. In Fig. 2 spectra can be seen for different num-
bers of kicks, where f � 4.5 GHz and g � 0.0048. It
can be seen that there is spectral broadening for lower
kicks and that for higher kicks the spectral width re-
mains the same, whereas the different sidebands have
different intensities, which we observed to be peri-
odic. The spectral envelope is not exponential, as is
expected for localization behavior, because of opera-
tion near resonance.6,7 At resonance the dispersion is
effectively eliminated, leaving only modulation, which
causes broadening of the spectrum.

Figure 3 shows the simulation and the experi-
mental results, where the spectral width for each kick
was calculated with the average standard deviation
and then represented as a function of the number of
kicks. The experimental results versus numerical
simulation of the localization buildup can be observed
for f � 4.5 GHz and f � 7 GHz (where g � 0.0048,
and g � 0.011 respectively), where there is diffusive
broadening and then confinement. The localization

Fig. 1. Schematic of experimental system consisting of op-
tical f iber, LiNbO3 phase and amplitude modulators, polar-
ization controllers (PCs), a circulator, a fiber Bragg grating,
erbium-doped f iber amplifiers (EDFAs), a tunable-diode
laser, and an electro-optic switch.

Fig. 2. Spectra obtained from (a) the experiment and (b) a
numerical simulation for various numbers of kicks �N�,
showing localization in frequency for L � 3 km DSF, where
f � 4.5 GHz and g � 0.0048. The axis is the power [dBm]
versus wavelength [nm] in all cases.

Fig. 3. Evolution of localization for L � 3 km DSF, where
(a) f � 4.5 GHz, g � 0.0048 and (b) f � 7 GHz, g � 0.011;
�, experimental values; solid curves, numerical simulation.
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Fig. 4. Experimental results for (a) the number of side-
bands and (b) the number of kicks for the transition to lo-
calization, both as functions of

p
1�g; (c) spectral width as

a function of modulation amplitude, before localization, for
f � 4 GHz (g � 0.0038). In all cases, L � 3 km DSF.

is characterized by oscillations about some average
spectral width. It can be seen that localization occurs
sooner for larger g. The agreement between the
experimental and the theoretical results is very good.

To verify the linear relations presented in expres-
sions (7) and (8) we performed a series of experiments
in which the cavity length and the modulation am-
plitude remained constant. The only change was in
the modulation frequency, which varies the value of g.
The frequencies were varied from 3 to 8 GHz, in steps
of 0.5 GHz, except at 5 GHz. For each g, the spec-
trum was measured for every kick as long as measure-
ment was possible (until lasing of the system or loss
of synchronization). The results calculated from the
experimental data are presented in Fig. 4. The num-
ber of sidebands was calculated as Dn � B�V, where
B is the average spectral width of the localization. It
can be seen [Fig. 4(a)] that there is good agreement be-
tween the theory and the experiment; the experimental
inaccuracies for small g can be explained as being due
to an insuff icient number of kicks (spectral widths) be-
ing available for averaging. As for large g, the linear
relationship is expected to fail (assumptions made are
no longer valid), as can be observed in the deviation
from linearity as

p
1�g goes to zero.

In considering the relationship between the number
of kicks necessary for localization to

p
1�g [Fig. 4(b)],

the criteria that we used was selection of the kick
found by intersection between the spectral broadening
region and the average spectral width, defined above.
This average width represents the long-term localiza-
tion behavior, meaning that overall localization actu-
ally occurs when this average is reached and that any
additional spectral broadening is due to oscillations.
Here, also, the averaging is inaccurate.

It can be seen that there is good correlation between
the results and the theory. However, note that the
linear line does not intersect the zero; there is a shift
of two kicks. This shows that the criterion used is not
exact.

It can be deduced from Fig. 4(c) that Dn should also
be linear with

p
A for a specific g. To verify this ex-

perimentally, g and the number of kicks must be kept
constant and the parameter varied is A, the modula-
tion amplitude. Verifying this relationship proved to
be impossible in the experiment because of the large os-
cillations about the average spectral width, which are
characteristic of the localization behavior. These os-
cillations depend on g but also on A, thus producing
too many f luctuations in the number of sidebands.

The dependence of Dn on
p
A in the localization

regime [relation (7)] could not be verified experimen-
tally because of the large oscillations that depend on
A. However, before localization occurs, we achieve
spectral broadening without oscillations; thus the de-
pendence of n on A is linear according to the classical
theory. For a small number of kicks, the assumptions
made in approximations (4) are valid, and it can be
seen that the angular momentum is proportional to k

and that the spectral width is proportional to A:

2gDn � k ) B � Vk � A . (9)

This linear relationship was verified in the experi-
ment, as shown in Fig. 4(c): The number of kicks
(loops) was 10 (before localization occurred), the fiber
was the same as before, f � 4 GHz, and g � 0.0038.
The linear relationship is clear; the slight deviations
are a result of the instability of the experimental
system and the small shift of the broadening behavior
as a function of A. The linear relationship can be
seen to fail for large A, where it cannot be assumed
that we are in the region before localization.

In conclusion, we have presented experimental veri-
fication of the evolution of localization in optical f ibers
and shown additional behavior for weak dispersion.
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