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Inhibition of modulation instability in lasers by noise
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It is shown that additive noise can inhibit modulation instability in laser equations of motion. A related
self-starting condition for pulsation is obtained by employing a f luctuation–dissipation relation between noise
and losses and a statistical mechanics approach. Entropy considerations are shown to play a crucial role.
The quantum limit for self-starting is estimated. © 2003 Optical Society of America
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Many equations describing the propagation of light in
nonlinear media, either with or without a laser cavity,
exhibit modulation instability. Examples are the non-
linear Schrödinger equation,1 the mode-locking master
equation,2 and the laser Maxwell–Bloch equations.3

For modulation instability to manifest itself, suf-
ficient power is required. In a lossy medium, for
example, modulation instability must overcome the
losses if it is to occur. In the case of the nonlinear
Schrödinger equation this condition is conveniently
formulated as the requirement that the length scale
associated with the nonlinearity be longer than the one
associated with the losses.1 In a laser the situation is
different: The gain, as well as a saturable absorber
sometimes inserted into the cavity, intensif ies the
instability.4 The equations of motion of lasers do not
have a stable cw solution when there is a saturable
absorber or the Kerr nonlinearity and dispersion are
focusing,5 and yet the existence of such a solution is
an experimental fact. It seems that these equations
of motion, which explain and predict so much about
mode-locked lasers, do not explain how such lasers
can operate in a cw regime.

This problem has been addressed in various stud-
ies.3,6 –9 Many adhere to the traditional stability
analysis approach, trying to f ind a stable cw solution
in different equations.3,6 For example, when the
response of the gain medium is relatively fast, the
master equation does have a stable cw solution at
low powers.6 Others go beyond the stability analysis,
suggesting different mechanisms that can stabilize a
cw operation. Examples are a decoherence process
of modes,7 spurious ref lections,8 and reduction of the
laser gain caused by accumulation of random radia-
tion.9 The stabilizing effect of these mechanisms on
a cw regime has been thoroughly investigated.10 – 12

In this Letter we show a fundamental mechanism
that can explain cw operation where it is unstable
according to the conventional theory: We show that
in a laser a cw can be stabilized by noise. This seems
counterintuitive, since if a cw is unstable by itself,
noise seems only to destabilize it more. However, the
physical idea behind stabilization by noise is simple.
When noise is present, there must be a net loss per
round trip in a steady state, which we refer to as
the loss excess. This is a f luctuation–dissipation
relation: Since noise constantly supplies additional
energy to the system, the only way to keep the
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energy constant is if the loss is slightly larger than
the gain.

When energy uniformly removed from the cav-
ity is returned to it as noise, pulsed solutions are
discriminated against. The reason is that pulses,
being ordered configurations, have much less volume
in phase space, or less entropy in the language of
statistical mechanics. The probability of a pulsed
solution’s being promoted by the noise is therefore
extremely small—exponentially small in the number
of modes.

The fact that mode locking is an order–disorder
phenomenon makes it necessary to take entropy, not
only dynamics, into account. This, as well as the fact
that mode locking is essentially a many-body problem,
makes statistical mechanics very useful in under-
standing of mode locking.13,14 Dynamical stability
against small perturbations in the initial conditions
is not always the correct criterion for distinguishing
physical from nonphysical solutions. A dynamically
unstable solution can thus be thermodynamically
stable, just as the liquid phase of matter is.

In this Letter we show how much noise is required
for stabilizing a cw state, which is, in other words,
a self-starting condition for a passively mode-locked
laser with noise. Following the statistical-mechanics
approach, we calculate the depth of the local minimum
of free energy representing an unstable cw state and
compare it with the noise power (“temperature”).

This condition can be estimated from the
f luctuation–dissipation relation: If the power of
the noise is W and the average intracavity energy is
P0, the rate with which the loss excess removes energy
from the cavity is W�P0. This expression will show
up as a loss term in the equation of motion, which will
inhibit modulation instability just as ordinary loss
does in the case of free propagation. Comparing the
loss excess with the nonlinear length scale leads to the
same self-starting condition. We compare the result
to a previously obtained self-starting condition7 and es-
timate the power threshold induced by a fundamental
noise source in lasers: spontaneous emission.

We now analyze a general form of a wide class of
laser equations of motion and obtain the loss excess
term mathematically. Although the idea of loss ex-
cess is very general for lasers, being merely a result of
energy conservation, to put it as a precise mathemati-
cal statement, one must make some assumptions about
© 2003 Optical Society of America
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the equation of motion. Many laser equations of mo-
tion are of the form

dam

dt
� fm�a�t�� 2

P 2 P0

e
am�t� 1

p
T G̃m�t� , (1)

where am�t� are the complex slowly varying ampli-
tudes of the axial modes in the laser, t is either the
time or a slow time variable that represents the num-
ber of round trips the laser has accomplished,2 and
fm�a�t�� is a function of all the am, representing all
the deterministic parts of the differential equation ex-
cept for the gain saturation term. In the case of the
mode-locking master equation am includes terms rep-
resenting spectral filtering, group-velocity dispersion,
losses, the Kerr nonlinearity, and more.2 Gain satura-
tion is represented by the second term of Eq. (1), where
P �

P
m jamj

2. It represents a slow saturable ampli-
fier that stabilizes the intracavity power P around a
constant value P0. Such a term can be thought of as
a linearization of the formula g0��1 1 P �Psat� around
the operating power P0, where g0 is the small-signal
gain, Psat is the saturation power, and e . 0 is the
coeff icient obtained by the linearization. Regardless,
it is a generic term representing a power stabiliza-
tion mechanism by a slow amplifier. The last term in
Eq. (1), where T is the power of the noise per mode, is
a complex white Gaussian Langevin force satisfying15

�G̃m�t1�G̃�
n�t2�� � 2dmnd�t1 2 t2� ,

�G̃m�t1�G̃n�t2�� � 0 . (2)

We have shown13,14 that T plays the role of temperature
in statistical mechanics: The larger T is, the more
states with large entropy are promoted.

If there are N modes, the total power supplied to the
laser by the noise is W � 2NT . We assume that N is
large, approaching infinity, but W remains a finite con-
stant. We also take the limit of e ! 0, which means
that we neglect power f luctuations. This specific lim-
iting procedure is needed solely for the loss excess term
to clearly decouple and separate from the others and to
show up as a constant loss term. Generally, power is
a f luctuating quantity and the f luctuation–dissipation
relation holds only on average.

The smaller e is, the faster the motion of P toward
P0. To solve this fast time-scale dynamics f irst, we
perform a scaling of time: t0 � t�e. We obtain
dam

dt0
� efm�a�et0�� 2 �P 2 P0�am�et0� 1

µ
eW
2N

∂1�2

G̃m�t0� ,

(3)
where Eq. (2) holds with t replaced by t0. Multiplying
Eq. (3) by a�

m, taking the real part, and summing over
m, we obtain

1
2
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where the summation convention for a repeating in-
dex is used here and henceforth and the t0 dependence
has been suppressed. Since the spectral power of the
noise term on the right-hand side of Eq. (4) is eWP0�N,
in the limit of N ! ` it vanishes, and that term can
be replaced by its nonvanishing average value16 eW�2.
Since the resulting deterministic equation reaches a
steady state much faster than the term e Re�a�

mfm�a��
varies, one can solve for P :

P � P0 1
e
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Ω
W
2

1 Re�a�
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æ
1 O�e2� . (5)

Equation (5) can be substituted back into Eq. (1), and
in the limit e ! 0 we obtain
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(6)
The second term in Eq. (6) projects out of fm the com-
ponent responsible for variations in P . If the last two
terms were absent, P would be a constant of motion
of Eq. (6), provided that its initial value were P0. The
last term, which is a constant loss term, is the loss
excess. It removes energy from the laser at a rate of
W�P0.

We now present an example: the mode-locking
master equation, which is the nonlinear Schrödinger
equation with gain, saturable absorption, and possibly
other terms. Without gain in this example modula-
tion instability does not occur when the length scale of
losses is shorter than that of the nonlinearity.1 In a
laser, replacing the ordinary loss by the loss excess,
we obtain the following self-starting condition:

gP 2
0 . W , (7)

where g is the nonlinear coefficient of the medium,
either the self-amplitude or the self-phase-modulation
coefficient. Typical of statistical mechanics, this
condition is a comparison between the interaction and
the noise (“temperature”).

Nonlinear equations with noise are intricate, and, to
go beyond the estimation given in relation (7), a precise
analysis of the interplay between noise and the nonlin-
earity, temperature and interaction in the language of
statistical mechanics, is needed. As we explained, a
physically (thermodynamically) stable state would be a
minimum of the free energy of the system. To demon-
strate this powerful tool, we derive a self-starting con-
dition for the special case of a saturable absorber alone.
We assume that there are N modes equally supported
by the laser amplifier and define the order parameter

M �
1

p
NP0

ÇX
m

am

Ç
.

Clearly, if the amplitudes and phases of the modes
are all equal, that is, a locked state, M approaches
1. Whenever there is a large number of modes that
are in phase, M is finite, whereas in a cw phase M
is O�1�

p
N �, approaching zero. In Refs. 13 and 14 we

studied the free energy of this system and its two min-
ima, one representing the cw and the other, pulsation.
When the levels of these minima meet, a phase tran-
sition occurs. That is, if the power is lower (higher)
than at that point, the cw (pulsation) is the globally
stable state.
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Fig. 1. Plot of the free energy, obtained from the mean
field theory,13,14 as a function of the order parameter M
for different values of T . The number near each curve is
the corresponding value of T��gsP

2
0 �. The behavior of the

curves near M � 0 is shown in the inset: M � 0 remains
a local minimum of the free energy and thus a metastable
state.

However, at M � 0 there is always a local minimum
of the free energy: the cw is always a metastable state
(see Fig. 1). To study this local minimum, we expand
the free energy given in Refs. 13 and 14 for small M
and small T , obtaining

F �M� 2 F �0� � NTM2 2
NgsP 2

0

3
M4. (8)

We neglected all the powers of M higher than 4 as well
as the TM4 term. gs is the self-amplitude-modulation
coeff icient. The height of the barrier conf ining the
system in a cw state, the maximum of relation (8),
is 3NT2��4gsP

2
0 �, and to cross this barrier, the tem-

perature T should be higher than that barrier. We
therefore obtain the condition gsP

2
0 . 3W�8, which is

in close accordance with relation (7).
Relation (7) provides only the order of magnitude

of the self-starting power. The precise condition de-
pends on the precise form of the equations of motion.
Moreover, since pulsation starts from an intensity f luc-
tuation, the precise self-starting condition depends on
how long one is willing to wait for a sufficiently large
intensity f luctuation, and the formula itself must be
probabilistic.

A remarkable conclusion of relation (7) is that the
power of the noise needed to inhibit modulation insta-
bility is very small. The noise-to-signal ratio W�P0 is
proportional to the nonlinear coeff icient of the system
times the average optical power (gP0), which ref lects
the fact that noise does not compete with the intracav-
ity energy. It competes with the interaction induced
by the nonlinearity, which is very small.

It is interesting to compare relation (7) with that ob-
tained from the decoherence time model.7 Comparing
the last term of Eq. (6) with Eq. (39) from Ref. 7 sug-
gests identifying 2P0�W as the decoherence time. In
this case the self-starting condition of Ref. 7 coincides
with relation (7) up to a factor of ln N , which is sub-
leading in N and probably falls beyond the approxi-
mations we made in this Letter. This also provides
a formula for the decoherence time caused by additive
noise and in particular by quantum noise.

Quantum noise is well modeled by white Gaussian
Langevin terms and is probably the most fundamental
source of noise in lasers. It is interesting to evalu-
ate whether quantum noise alone can account for
the mode-locking threshold. The total power of
the noise of an amplif ier is h̄vB�G 2 1�,17 where v
is the optical frequency, B is the bandwidth, and G is
the total gain per pass. This power is usually mul-
tiplied by an enhancement factor when the amplif ier
is saturated. Taking typical values for an erbium
amplifier, with B � 1012 Hz, we obtain W � 7 nW.
With g typically being 2 W21 km21 for fibers and the
intracavity length being 10 m, relation (7) predicts a
threshold of P0 � 1 mW, which is a plausible result in
fiber lasers. This example demonstrates how a small
noise-to-signal ratio is suff icient for stabilizing a cw
operation.
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