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Abstract

We propose a novel method for compression of periodic optical pulses based on all-optical repetition rate multi-

plication of pulses without requiring propagation in a dispersive delay line. The compression principle is explained

using the temporal Talbot effect. The proposed method is demonstrated experimentally with the generation of �20 ps

pulses from cw radiation of a laser diode. The repetition rate multiplication is performed with fiber Bragg gratings. The

proposed method simultaneously implements two important requirements of many fields, for example, of optical

communications: pulse compression and pulse repetition rate multiplication.

� 2003 Elsevier Science B.V. All rights reserved.
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Conventional light pulse compression is ac-

complished in two stages, first by performing

quadratic phase modulation of the pulses (linear

chirp of frequency) and then propagating the

modulated pulses through a dispersive delay line

[1]. In this paper, we demonstrate a novel method

of pulse compression of periodic optical pulses

that does not require propagation of the pulses in
a dispersive delay line. This method is based on the

use of all-optical pulse repetition rate multipli-

cation. The proposed technique allows imple-

mentation of two important operations in pulse

processing, namely pulse compression and repeti-

tion rate multiplication, using a simple and com-

pact device.

In the present method the original pulses (I0 in

Fig. 1(a)) are phase modulated (u in Fig. 1(a)) as
in the conventional compression method, and then

replicated and shifted M � 1 times by an amount

of T=M each time (where T ¼ 1=f is the pulse

period), resulting in a rate multiplication (by M) of

the pulse train (Imult in Fig. 1(a)). This multiplica-

tion can be performed, for instance, with the help
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of M fiber Bragg gratings (Fig. 1(a)) or fiber or

waveguide couplers 1�M and M � 1 (Fig. 1(b)).

(Reflection from each grating should be small to

prevent multiple reflections.) It will be shown later

that under certain conditions the superposition

and interference of the multiplied pulses (taking
into account their phases) results in multiplied

compressed pulses.

First, we shall restrict our consideration to

Gaussian pulses with quadratic phase modulation.

The train of the multiplied pulses can be repre-

sented as an expansion in a Fourier series

EmultðtÞ ¼
X1

n¼�1
cn expðihnÞ expði2pnt=TMÞ; ð1Þ

where EmultðtÞ and TM are the field and period,

respectively, of the multiplied pulses (TM ¼ T=M),
cn and hn are the absolute value and argument,

respectively, of F ð2pn=TMÞ and F ðxÞ is the Fourier
transform of the field of the single phase modu-

lated pulse in the train. Let us assume that these

phase modulated and multiplied pulses can be

compressed by a dispersive delay line as in the

conventional compression method. In this case,

the spectral phase hn is compensated by the phase
2p2n2b2L=T

2
M acquired by each harmonic in the

propagation in the dispersive delay line, where b2

is the group velocity dispersion b2 ¼ d2b=dx2, b is

the propagation constant, x is the optical angular

frequency, and L is the line length. Consequently,

Eq. (1) can be rewritten in the form:

EmultðtÞ ¼
X1

n¼�1
cn expð�i2p2n2b2L=T

2
MÞ

� expði2pnt=TMÞ: ð2Þ

One can see from Eq. (2) that the multiplied pulses
will be compressed if

exp
�
� i2p2n2b2L=T

2
M

�
¼ 1

and this yields the condition

pjb2jL=T 2
M ¼ m ðm ¼ 1; 2; . . .Þ: ð3Þ

If condition (3) is met, the superposition of the

phase modulated multiplied pulses gives the fol-

lowing pulses:

EmultðtÞ ¼
X1

n¼�1
cn expði2pnt=TMÞ:

These pulses are identical to those, which would be

obtained in the conventional compression method

at the end of the dispersive delay line with dis-

persion b2L defined from condition (3). Therefore,
we shall call this dispersive delay line as an

equivalent line.

The results obtained are illustrated in Fig. 2. In

the conventional compression method, the phase

Fig. 2. Illustration for explanation of the proposed method:

superposition of the phase modulated multiplied pulses Imult in

our method yields in condition (3) the same multiplied com-

pressed pulses Isuper as the pulses Icomp at the output of an

equivalent dispersive delay line (DDL) in the conventional

compression method.

(a)

(b)

Fig. 1. Methods of all-optical pulse rate multiplication by M:

(a) using M low reflecting fiber Bragg gratings; (b) using fiber or

waveguide couplers 1�M and M � 1. I0 are the original pulses
with period T and Imult are the multiplied pulses with period TM
(phase modulation of the multiplied pulses is not shown). FBG

are fiber Bragg gratings, C is a circulator, CPL is a coupler.
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modulated multiplied pulses Imult propagate

through the equivalent dispersive delay line (DDL)

with dispersion b2L and transform to the com-

pressed pulses Icomp. Eq. (2) can be considered as

representing propagation of these compressed

pulses backwards through the same line but with
opposite dispersion �b2L. It is clear that in this

case, the dispersion is compensated and the output

pulses Isuper are identical to the input pulses Imult. In

other words, the pulses Isuper are the result of the

superposition of the multiplied pulses Imult. On the

other hand, condition (3) represents the integer

temporal Talbot effect [2]. According to this effect,

in condition (3), the pulses at the input and output
of such a dispersive delay line are identical (tem-

poral self-imaging [2–4]). This implies that the

superposition of the phase modulated multiplied

pulses Imult results in the same multiplied com-

pressed pulses Icomp as at the end of the equivalent

dispersive delay line in the conventional compres-

sion method. (We assume that there is no overlap

between the multiplied compressed pulses.)
Condition (3) can be written in a more general

form

pjb2jL=T 2
M ¼ m=p; ð4Þ

where m and p are integers. If m and p have no

common factor, condition (4) describes the frac-

tional temporal Talbot effect [5]. In this case, the

field amplitude of the pulse train at the dispersive

delay line output can be expressed, as in [6], in the

form:

EoutðtÞ ¼
Xp�1

n¼0

Cðn;m; pÞEinðt � nT=pÞ; ð5Þ

where EinðtÞ is the input field amplitude of the

pulses, and the coefficients Cðn;m; pÞ are given by

Cðn;m; pÞ ¼ ð1=pÞ
Xp�1

q¼0

exp½ð2ipq=pÞðn� mqÞ
: ð6Þ

For the case m ¼ 1, p ¼ 2, it can be obtained, ac-

cording to (5) and (6), that Cð0; 1; 2Þ ¼ 0,
Cð1; 1; 2Þ ¼ 1 and EoutðtÞ ¼ Einðt � T =2Þ. It means

that in this case, the pulses at the input and output

of a dispersive delay line are identical, but shifted by

half a period. In the general case of the fractional

Talbot effect, the pulses at the output of a dispersive

delay line, as it follows from (5) and (6), have the

same intensity shape as the input pulses but the

output pulse rate is multiplied by p, if p is odd or by

p/2, if p is even. This implies that superposition of

the multiplied pulses gives in this case additional
multiplication of the original pulses.

Note that our compression method as well as the

temporal Talbot effect can be exactly realized only

for infinite pulse trains. Nevertheless, the temporal

Talbot effect is observed approximately for a finite

number of pulses [7]. This occurs under the con-

dition that the total number of the pulses is much

larger than the number of the pulses interacting
with the central pulse in the dispersed pulse burst.

Accordingly, the pulse compression in our method

will be still performed if the pulse trains are finite or

the periodic pulses have timing or power jitter. The

time interval, in which the pulses remain approxi-

mately constant, should be in the latter case much

larger than the time of the multiplied pulse inter-

action. For instance, this interaction time for the
pulses shown in Figs. 1 and 2 is 170 ps.

Calculation of the pulse propagation can be

accomplished using the temporal analog to the

ABCD law for spatial Gaussian beams [8]. The

dispersion b2L of the equivalent dispersive delay

line can be found (with the assumption of zero

chirp in the pulse after the compression) through

the given pulse durations s0 and sc, before and
after the compression, respectively (where s is the

1/e pulsewidth):

jb2jL ¼ ðsc=2Þ2½ðs0=scÞ2 � 1
1=2: ð7Þ
It must be noted that although in reality there is no

dispersive delay line in our method, the phase

modulation of the pulses, u ¼ Ct2=2 (where C is

frequency chirp), is calculated for dispersion (7) of

the equivalent dispersive delay line

1=C ¼ b2L½1þ s2c=4b2L
� �2
:

Substitution of b2L from (7) into condition (4)

gives the relation for the pulse compression ratio

r ¼ s0=sc:

ðr2 � 1Þ1=2 ¼ 4mr2T 2=ðpps20M2Þ:

For example, the following parameters were cho-

sen for the calculation of the pulses in Figs. 1 and
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2: s0 ¼ 35 ps,M ¼ 10, T ¼ 100 ps, m ¼ 1, p ¼ 1. In

this case, after the appropriate phase modulation

and multiplication of the pulse repetition rate from

10 to 100 GHz, the pulse is compressed from 35 to

3.6 ps. It is interesting to note that the pulse
compression can occur for both, positive and

negative signs of the pulse chirp.

The approach using an equivalent dispersive

delay line is very useful because it allows including

into consideration not only cases of the fractional

Talbot effect but also pulses of an arbitrary form.

Indeed, condition (4) is independent of the pulse

shape. We shall use this for explanation of the
experimental results.

In the experimental demonstration of the pro-

posed method, we realized a particular case of

light compression: generating the optical pulses

from cw radiation [9,10]. In the conventional

method, laser radiation is sinusoidally phase

modulated and then propagated through a dis-

persive delay line. In our method, the multiplica-
tion substitutes for propagation in the dispersive

delay line. However, the dispersive delay line can

be considered as equivalent, similar to that shown

in Fig. 2. In the equivalent dispersive delay line, a

sinusoidal phase modulation acts like a number of

‘‘time lenses’’ [11], where each one ‘‘focuses’’ the

pulse from cw radiation. According to the pro-

posed method, the sinusoidal phase modulation
and multiplication yield the same pulses as those

‘‘focused’’ in the equivalent dispersive delay line in

the conventional method, but multiplied by M (or

additionally multiplied), if condition (4) is met and

if there is no overlap between the multiplied

compressed pulses. The dispersion b2L for which

the pulse is optimally ‘‘focused’’ is dependent on

the pulse period T and on the modulation index A

(the phase modulation amplitude). On the other

hand, the dispersion b2L of the equivalent disper-

sive delay line can be found from condition (4).

From this it is clear that for a chosen period TM
and fixed p we have several values of a modulation

index A that gives minimal width pulses after

phase modulation and rate multiplication. These

values correspond to different values of m in (4).
We have performed numerical simulation of the

pulses obtained from cw radiation of wavelength

1543.35 nm after phase modulation of rate f ¼ 6:25

GHz and rate multiplication M ¼ 4. For the se-

lected rate there are several values for the modu-

lation index that give good quality pulses after

pulse multiplication at M ¼ 4: A ¼ 2:2, 2.405, 3.7,
7.61 rad, where in the second and fourth cases the

pulse rate obtained is 6:25� 4� 2 GHz. The
analysis shows that the cases where A ¼ 2:2, 3.7 rad
correspond to p ¼ 4,m ¼ 4 andm ¼ 2, respectively.

As was shown previously, for m=p ¼ 1=2 in (4) the

input and output pulses in the dispersive delay line

are also identical but shifted by half a period. This

shift can be seen in Fig. 3, where the dotted curve

shows the pulses obtained by the proposed method

after phase modulation with modulation index
A ¼ 3:7 rad and rate multiplication by M ¼ 4, the

solid and dashed curves show, respectively, for

comparison the intensity and phase of the pulses

that would have been ‘‘focused’’ in the equivalent

dispersive delay line (without multiplication) for

m=p ¼ 1=2. The dispersion of this equivalent line is

DL ¼ �201:5 ps/nm (whereD ¼ �2pcb2=k
2, c is the

velocity of light and k is the wavelength). The cases
where A ¼ 2:405, 7.61 rad correspond to p ¼ 4,

m ¼ 3 and m ¼ 1, respectively. In this case, the

shape of the pulse�s intensity at the dispersive line

output is also reproduced, however with a doubled

rate. This additional pulse multiplication can be

Fig. 3. Numerical simulation: the pulses obtained from cw ra-

diation after phase modulation of frequency f ¼ 6:25 GHz,

modulation index A ¼ 3:7 rad and after rate multiplication of

M ¼ 4 (dotted curve); the intensity (solid curve) and phase

(dashed curve) of the pulses after the same phase modulation

and propagation (without multiplication) through an equiva-

lent dispersive delay line with dispersion of DL ¼ �201:5 ps/nm,

which corresponds to m=p ¼ 1=2 in (4).
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seen in Fig. 4, which shows calculation of the pulses

obtained by the proposed method (dotted line) and

at the output (solid line) of the equivalent dispersive

delay line (without multiplication) for A ¼ 7:61 rad,
M ¼ 4, p ¼ 4, m ¼ 1. The dispersion of the equiv-

alent line in this case is )100.75 ps/nm. It must be
noted that in Figs. 3 and 4 the pulses after rate

multiplication (dotted curves) do not represent an

exact 4 and 8 time repetition of the pulses, ‘‘fo-

cused’’ in the equivalent delay line (solid curves).

This is due to the fact that the intensity and phase

between the ‘‘focused’’ pulses are not equal to zero

and the pulse superposition at the rate multiplica-

tion is of a more complex nature. This also explains
the slight difference from the optimal ‘‘focusing’’

for the found values of A (if we consider that the

‘‘focusing’’ is optimal when the phase during the

pulse is constant). For instance, the optimal ‘‘fo-

cusing’’ for DL ¼ �201:5 ps/nm is achieved for

A ¼ 3:9 rad instead of 3.7 rad.

In the experiment, we accomplished rate mul-

tiplication of optical pulses with fiber Bragg grat-
ings (Fig. 1(a)). In [12], a sampled Bragg grating

was used for this purpose. We proceed from the

assumption that the complex spectra of the signal

and the same signal with repetition rate multipli-

cation of M are different by the factor F ðxÞ [13]:

F ðxÞ ¼ exp½�ixð1� 1=MÞT=2

� ½sinðxT=2Þ= sinðxT=2MÞ
: ð8Þ

In other words, the spectral dependency of the

overall reflectivity of the gratings should be of the

form (8). The results of the calculation of jF ðkÞj2
according to (8) for f ¼ 6:25 GHz, M ¼ 4 are

presented in Fig. 5 (dotted curve). It is known that

for low reflectivity the spatial envelope of the

Bragg gratings should be the Fourier transform of

the reflection spectrum. The Fourier transform of
(8) results in M d functions. In other words, to

obtain reflectivity in the form of (8), M point

Bragg gratings must be written in the fiber, where

the distance between them provides the time delay

T=M . It is clear that in reality the lengths of the

gratings should be small compared to the distance

between them, so that the maxima in the reflection

spectrum differ little from one another.
The Bragg gratings were written in a boron

doped photosensitive fiber by cw UV radiation

(k ¼ 244 nm) using a phase mask. The reflectivity

of each grating was 2%. The positioning accuracy

of our system of 1 lm was enough to provide the

necessary time delay of the pulses between the

Bragg gratings, but was not sufficient to obtain

reflection from all the gratings in the same phase.
To solve this problem, after the gratings were

written, the intervals between the gratings were

irradiated with UV light without the mask. In this

way, the optical path between the gratings was

changed until the desired spectral shape of reflec-

Fig. 4. Numerical simulation: the pulses obtained from cw ra-

diation after phase modulation of frequency f ¼ 6:25 GHz,

modulation index A ¼ 7:61 rad and after rate multiplication of

M ¼ 4 (dotted curve); the pulses after the same phase modu-

lation and propagation (without multiplication) through a

equivalent delay line with dispersion of DL ¼ �100:75 ps/nm

(solid curve), which corresponds to p ¼ 4, m ¼ 1 in (4).

Fig. 5. The measured reflectivity (solid curve) of four Bragg

gratings. The normalized function jF ðkÞj2 (dotted curve) is

calculated according to (8) for M ¼ 4 and f ¼ 6:25 GHz.
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tivity was achieved [14]. Fig. 5 (solid curve) shows

the reflection spectrum measured with the help of a

tunable laser diode for the four fiber Bragg grat-

ings written. The length of each grating is 0.3 mm,

the distance between the centers of each two

gratings is 4 mm.
In the experiment, the pulses were created from

cw radiation of a tunable laser diode. The light,

sinusoidally phase modulated by a LiNbO3 elec-

trooptic modulator, was reflected from the fiber

Bragg gratings and with a circulator was directed

to a photodetector then an oscilloscope (both with

50 GHz bandwidth). To obtain the desired pulses,

fine tuning was required of the laser wavelength,
the modulation frequency and the modulation in-

dex. According to our simulations this tuning

should be performed with the following resolu-

tions: Dk ¼ 0:005 nm, Df ¼ 0:01 GHz, and DA ¼
0:1 rad. Fig. 6 shows the pulses obtained with

rate multiplication M ¼ 4 using four fiber Bragg

gratings. The phase modulation frequency and

modulation index were 6.25 GHz and 3.3 rad, re-
spectively. The background between the adjacent

pulses in Fig. 6 is caused, most likely, by insufficient

time resolution of the detector and oscilloscope.

We also obtained pulses from cw radiation by

rate multiplication of M ¼ 2. The multiplication

was performed by two Bragg gratings spaced 8

mm apart. The experimental results are presented

in Fig. 7 (solid curve), where the phase modulation
frequency was f ¼ 6:414 GHz and modulation

index was A ¼ 1:7 rad. For comparison, the dotted
curve in Fig. 7 shows the simulation results for the

same modulation frequency and A ¼ 1:6 rad. The

presence of small additional peaks on the experi-

mental curve is explained by the difference between

the experimental value of the modulation index

and that used in simulation. Calculation shows

that for this case, the almost optimal ‘‘focusing’’

by the equivalent dispersive delay line is obtained
for dispersion jDjL ¼ 765 ps/nm which corre-

sponds to m=p ¼ 1=2 in (4).

In conclusion, we proposed a novel method for

compression of periodic optical pulses based on

repetition rate multiplication that does not require

propagation of the pulses in a dispersive delay line.

This method was explained using the temporal

Talbot effect. We also presented experimental
demonstration of the method, where optical pulses

were generated from cw radiation using sinusoidal

phase modulation and rate multiplication. The

proposed method can have wide applications be-

cause it simultaneously implements two important

requirements of many fields, for example, of op-

tical communications: pulse compression and

pulse repetition rate multiplication. In addition,
the method proposed enables the construction of

more compact and thus more stable devices for

compression or generation of pulses. For instance,

for compression of the chirped optical pulses of a

laser diode, hundreds of meters up to several

Fig. 6. The pulses obtained experimentally from cw radiation

of a laser diode after sinusoidal phase modulation (modulation

frequency f ¼ 6:25 GHz and modulation index A ¼ 3:3 rad)

and after rate multiplication of M ¼ 4.

Fig. 7. The pulses obtained from cw radiation after sinusoidal

phase modulation with frequency of 6.414 GHz and rate mul-

tiplication of M ¼ 2: experiment with A ¼ 1:7 rad (solid curve)

and calculation for A ¼ 1:6 rad (dotted curve).

348 N.K. Berger et al. / Optics Communications 217 (2003) 343–349



kilometers of fiber are used. For comparison, the

length of the repetition rate multiplier in our ex-

periments was 14 mm (for M ¼ 4). A repetition

rate multiplier can also be constructed on the same

chip as a semiconductor laser, which would further

increase the compactness of the device.
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