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Dispersion-mode pulsed laser
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A new self-consistency condition in pulsed lasers with strong intracavity dispersion imposes dispersion modes
with specific cavity-length dependent pulse rates, utilizing pulse-train self-imaging properties of a temporal
Talbot effect. We give an experimental demonstration of such a laser operation, using a long fiber cavity.
We also demonstrate temporal Talbot imaging of a train of short pulses that propagate along large distances of
dispersive fibers.  2000 Optical Society of America

OCIS codes: 140.3510, 070.6760, 060.5530, 260.2030.
Light pulses that propagate along dispersive media
change their shapes and spread in a way similar to how
spatially confined waves, such as Gaussian beams,
diffract and spread as they propagate in free space.
Therefore, if we wish to construct an amplitude-
modulated laser that has strong accumulated dis-
persion in its cavity, pulse oscillation will generally
be problematic because the pulses do not reproduce
themselves after one or more round trips in the cavity.
This diff iculty can cause very lossy and complex pulse
operation. Thus, for example, mode-locked operation
of a long fiber laser, with significant dispersion, is not
likely to produce good-quality short pulse trains. In
this Letter we show that operation of such lasers is
possible in a specific regime in which a pulse train is
self-imaged after a certain propagation distance. The
pulse-train self-imaging property is related to the spa-
tial Talbot effect,1 in which periodic spatial patterns
that propagate in free space are self-reproduced at spe-
cif ic distances that are multiples of the Talbot length.
Accordingly, we show that the self-consistency condi-
tion dictates specific values for the laser round-trip
cavity length, which are multiples of half the Talbot
length. For a given cavity length, the self-consistency
condition defines a series of allowed values for the
pulse rate. These values can be regarded as disper-
sion resonances or dispersion modes (D-modes) of a
temporal Talbot laser. Here we present experimental
demonstrations of such a laser operation. We also
give an experimental demonstration of reproduction of
trains of short pulses that propagate in long distances
of dispersive fibers. This method can be used to trans-
mit very short pulse trains through long distances of
dispersive fibers.

The explanation of the time-domain Talbot effect,
which is the basis for the present work, is similar to the
known spatial Talbot effect.1 As for beam diffraction
in free space, the propagation of pulses in a dispersive
medium in the slowly varying amplitude approxima-
tion is described by a Schrödinger-like equation,2,3
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Here the propagation is along z, and t � t 2 z�vg �
t 2 b1z is the internal pulse-time variable (relative
to the center of the pulse), where vg � 1�b1 is the
group velocity and b2 is the group-velocity dispersion
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(responsible for pulse broadening). We have neglected
third- and higher-order dispersion terms.

It is straightforward to see that a field envelope of
an input periodic pulse train c�t, z � 0�, with a rate
or pulse-train frequency f � V�2p, reproduces itself
as it propagates at distances that are multiples of the
so-called Talbot length1 zT � 4p��b2V2�. First, we
express the field envelope as a Fourier series:

c�t, z � 0� �
X

n
an exp�inVt� . (2)

Then, the propagation in the dispersive medium adds
to each component in the series the quadratically
n-dependent phase factor exp�ign2�2�, where3 g �
b2zV2, giving at a distance z

c�t, z� �
X

n
an exp�inVt�exp�ign2�2� . (3)

Therefore, when g�2 � 2pm (m is an integer), which
occurs for z � mzT � 4pm��b2V2�, we have

c�t, z � mzT � � c�t, z � 0� , (4)

an exact reproduction of the original pulse train. At
half-Talbot distances (odd multiples of zT�2), where
g�2 � �2m 1 1�p, we have

c�t, z � �2m 1 1� �zT�2�� � c�t 1 �p�V�, z � 0� , (5)

or the periodic pulse train is shifted by half a period.
At other distances the pulse-train shape and rate are
modified. For example, for zT�4, the rate is doubled.

We have demonstrated temporal Talbot self-imaging
of pulse trains in a dispersive fiber. Figure 1 gives
the experimental results, showing the input and the
self-imaged pulse train that has propagated 50 km in
the fiber.

We return to the dispersive pulsed laser. It can
have a linear or a ring configuration. The self-
consistency condition for its operation is that the
pulse train is reproduced after one round trip between
successive amplitude modulations. This happens for
cavity round-trip lengths that are multiples of zT .
Nevertheless, multiples of half of the Talbot distance
are sufficient for that requirement, since the p phase
shift of the reproduced pulse train can be compensated
for by propagation at half a period. Therefore the self-
consistency requirement for the dispersion-embedded
 2000 Optical Society of America
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Fig. 1. Talbot imaging of a pulse train in a dispersive
fiber, showing the original pulse train and its reproduction
at half the Talbot distance, with L � zT�2 � 50 km,
corresponding to b2 � 220.7 ps2�km and V � 12.4 GHz.
The amplitudes of the signals are normalized, and for
clarity the zero level is shifted and marked by dotted–
dashed lines. The ripple following each pulse is probably
an artifact that is due to the detector.

pulsed laser that the round-trip cavity length be
Lm � mzT�2 or that the pulse rate be

Vm
2 � 2pm��b2L� . (6)

Equation (6) determines the D-modes. Other cavity
lengths may allow operation of the laser, especially for
multiples of other rational numbers and fractions of
the Talbot length (where pulses can be retrieved after
several cycles), but more-complex pulse structures, as
well as higher losses and higher laser thresholds, are
expected.

An additional requirement for operation of such a
laser is synchronization, such that the pulse train per-
fectly reaches the successive modulations after each
round trip in the cavity. This condition is met when
f � V�2p � svg�L, where s is an integer. This means
that the pulse rate equals an s harmonic of the cav-
ity mode, or that the laser is mode locked. Thus, for
a proper operation of a dispersive pulsed laser, the
modulation frequency has to match both a D-mode
resonance frequency and a harmonic of the regular
mode-locking cavity resonance frequency. For real op-
erating conditions we performed the following calcu-
lation: Typical values of the first D-mode in a laser
with a standard fiber at wavelengths of �1550 nm, and
with a group-velocity dispersion of b2 � 220 ps2�km,
are L � zT�2 � 50 km and f � 12.62 GHz. On the
other hand, for such long cavities, the basic regular
cavity resonance frequency for mode locking is only
f � vg�L � 4 kHz. Therefore, very high-order har-
monics, of the order of s � 105 106, are needed for the
mode-locking frequency to reach the �10-GHz pulse-
rate regime.

The experimentally studied laser configuration is
shown in Fig. 2. It is a ring cavity consisting of a
long fiber, an erbium-doped fiber amplifier pumped
by a 980-nm diode laser, and a LiNbO3 amplitude
modulator. We used two types of fiber: The first was
a regular fiber with anomalous dispersion of b2 �
219.4 ps2�km, for l � 1530 nm and length L � 50 km,
with the first D-mode resonance at f1 � 12.8 GHz. We
also used a fiber with a positive, high group-velocity
dispersion, b2 � 1132 ps2�km, for l � 1531 nm, which
permitted the use of shorter lasers. Here the cavity
length that we used was L � 5.1 km, and the pulse
rate for the first D mode was f1 � 15.4 GHz. This
fiber with the positive group-velocity dispersion also
ensured that no solitons formed during pulsed laser
operation.

The output of the experimental lasers, the pulse
trains, and the spectra are shown in Figs. 3–6. The
resolution of the spectrum analyzer was 15 pm.
The minimum measured pulse widths were �15 ps,
close to the limit of the oscilloscope and the pho-
todetector, which had a 50-GHz bandwidth. We also
measured the width of the pulses by use of the second-
harmonic generation autocorrelation technique and
obtained a similar result [see inset of Fig. 4(a)]. We
can see the different behaviors of laser operation
when the frequencies are tuned to the first D-mode
resonances or away from resonances. At resonance,
we obtain high-quality pulses with a broad Gaussian
spectrum. Away from resonance, the pulses are
almost diminished or have a complex structure. The
spectra have more-complex shapes and are generally

Fig. 2. Experimental configurations of the pulsed lasers,
consisting of a fiber ring cavity with an erbium-doped
fiber amplifier (EDFA) and a LiNbO3 amplitude modulator.
PC, polarization controller.

Fig. 3. Output spectrum and signal from the laser with
b2 � 132 ps2�km, L � 5.1 km: operation (a) and (b) at the
first D-mode resonance � f � 15.4 GHz� and (c) and (d) out
of resonance � f � 12.0 GHz�. The same scale is used for
(a) and (c).
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Fig. 4. Same as in Fig. 3 but for a different bias condition,
modulation frequency, and lasing wavelength: operation
near resonance, with f � 14.8 GHz, and out of resonance,
with f � 13.8 GHz. Temporal autocorrelation of pulses
obtained by use of second-harmonic generation is shown
in the inset of (a).

Fig. 5. Output spectrum and signal from the laser with
b2 � 219.4 ps2�km, L � 50 km: operation (a) and (b) at
the first D-mode resonance � f � 12.8 GHz� and (c) and (d)
out of resonance � f � 13.8 GHz�. The same scale is used
for (a) and (c).

more confined. At resonance, matching the D-mode
requirement is equivalent to the case in which the
dispersion effect and the propagation shrink to
zero.4 Then, the successive modulations of the light
pulses in the cavity after each round-trip propagation
increase the sideband number and give broad Gaussian
spectra. Away from the D-mode resonance, round-
trip propagation between two successive modulations
adds arbitrary phases to the frequency components
of the pulse train in Eq. (3). These phases can
cause confinement of the spectrum, as can be seen in
Figs. 3–6, and, at special regimes, can also result in
a more-specif ic localization effect that limits sideband
formation in the frequency domain.3 This mechanism
limits short-pulse formation in such mode-locked
lasers. The confined spectrum, when localization
occurs, in some regimes has an exponential envelope,
Fig. 6. Same as in Fig. 5 but for different bias condi-
tions: operation near resonance, with f � 12.8 GHz, and
out of resonance, with f � 10.0 GHz.

whereas the spectrum has a broad Gaussian shape at
D-mode resonance operation. This can be seen in the
experimental spectra in Figs. 3–6.

It is also important to note that, when the applied
modulation frequency is slightly shifted, the laser can
self-adjust to the D-mode condition by a change in the
lasing wavelength as a result of the b2 dependence on
the wavelength. This f lexibility permits the different
lasing wavelengths in Figs. 3 and 4. In addition, a
change of the bias of the LiNbO3 modulator affects the
signal and the spectrum’s modulation depth but does
not alter their basic features.

In conclusion, we have shown the requirements for
the operation of pulsed lasers with high intracavity dis-
persion. The self-consistency condition dictates spe-
cif ic values for the pulse-rate square (or for the product
of the pulse-rate square and the total dispersion). A
demonstration was performed with a pulsed laser with
a long fiber cavity.
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