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Optical kicked system exhibiting localization in
the spatial frequency domain
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An optical kicked system with free-space light propagation along a sequence of equally spaced thin phase grat-
ings is presented and investigated. We show, to our knowledge for the first time in optics, the occurrence of
the localization effect in the spatial frequency domain, which suppresses the spreading of diffraction orders
formed by the repeated modulation by the gratings of the propagating wave. Resonances and antiresonances
of the optical system are described and are shown to be related to the Talbot effect. The system is similar in
some aspects to the quantum kicked rotor, which is the standard system in the theoretical studies of the sup-
pression of classical (corresponding to Newtonian mechanics) chaos by interference effects. Our experimental
verification was done in a specific regime, where the grating spacing was near odd multiples of half the Talbot
length. It is shown that this corresponds to the vicinity of antiresonance in the kicked system. The crucial
alignment of the gratings in-phase positioning in the experiment was based on a diffraction elimination prop-
erty at antiresonance. In the present study we obtain new theoretical and experimental results concerning
the localization behavior in the vicinity of antiresonance. The behavior in this regime is related to that of
electronic motion in incommensurate potentials, a subject that was extensively studied in condensed matter
physics. © 2000 Optical Society of America [S0740-3224(00)01208-X]
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1. INTRODUCTION
The fields of classical optics and quantum mechanics de-
scribe wave phenomena. The small-wavelength limit of
these theories is geometrical optics and classical Newton-
ian mechanics. In some situations there is a quantita-
tive correspondence between wave optics and quantum
mechanics.1,2 Much was learned about one theory from
the other one. The present study is based on extensive
research performed on the quantum-mechanical localiza-
tion found for the kicked rotor,3,4 which was initiated by
research on plasma physics and inspired by the explora-
tion of electronic motion in disordered solids.5,6 The
ideas developed in the studies of the quantum kicked ro-
tor are applied to classical optical systems, which are de-
scribed by the same wave equation with a similar applied
potential. It is in such a study that we achieve several
goals. First, we apply and find new ideas in optics and
also new possibilities for experiments that might be
easier to perform in optics. This can also shed new light
on the quantum-mechanical case. In the present study
we give an experimental verification of localization in an
optical system, which is an important addition to the sole
demonstration, obtained only in recent years, of a quan-
tum kicked rotor.7,8 To our knowledge, this is the first
experimental realization of an optical kicked system. In
addition, motivated by our optical system, we find new
features in a study of resonances and antiresonances,
which are related to the Talbot effect9 and are described
here in detail. Below in this section we give a short in-
0740-3224/2000/091579-10$15.00 ©
troduction to both the concept of a quantum rotor and its
role in the study of quantum chaos and localization.

The classical dynamics of chaotic systems were ex-
plored extensively during the past century, and the explo-
rations intensified with the advent of computers.10–14

The motion of such systems looks randomlike, although it
is generated by simple deterministic equations. We con-
fine ourselves to the exploration of Hamiltonian systems,
where phase-space volume is conserved. Also, the quan-
tal behavior of systems that are chaotic in the classical
limit was studied extensively in recent years.4,14–16 This
field is sometimes called quantum chaos. For bound sys-
tems with time-independent Hamiltonian equations, the
spectrum is discrete, and the motion is quasi periodic, and
therefore it definitely cannot be considered chaotic. For
systems with time-dependent Hamiltonian equations, the
energy is not a good quantum number, and the phase
space is in general not bounded. Consequently, there is
no such general argument about the asymptotic nature of
the quantum dynamics, which rules out its being chaotic.
Classically, for these systems, diffusion in phase space is
found. This diffusion is often suppressed by quantum in-
terference effects3,4,17–19 through a mechanism that is
very similar to Anderson localization, namely, suppres-
sion of electronic diffusion in disordered solids at low
temperatures.5,6 The standard system for the explora-
tion of the suppression of the classical diffusion by quan-
tum interference is the kicked rotor. It can be visualized
as a charged particle constrained to move on a frictionless
2000 Optical Society of America
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ring, in a uniform electric field directed in the plane of the
ring, which is pulsed in equal time intervals. To study
the quantal behavior various microscopic realizations
were suggested.20,21 So far, only one type of direct ex-
perimental demonstration of localization for the quantum
kicked rotor, with laser-cooled Na and Cs atoms in a
magneto-optic trap, has been reported.7,8 Suppression of
a similar nature was detected for driven atoms.22

Anderson localization is actually a wave phenomenon;
therefore it can also be observed for classical electromag-
netic waves. This phenomenon was indeed found in po-
sition space for truly random optical systems.23–25 It was
proposed as a tool for the study of the suppression of clas-
sical chaos by wave effects in the mode space of optical
systems26,27 and in the time domain of dispersive fibers.28

Geometrical optics plays the role of classical mechanics,
while wave optics plays the role of quantum mechanics.
Moreover, in the paraxial approximation the Maxwell
equations take the form of the Schrödinger equation,
where the direction of propagation corresponds to the
time in the Schrödinger equation.1,2 In particular,
kicked rotor realization was proposed to be done in dielec-
tric optical fibers.27 To our best knowledge, the experi-
ments proposed in Refs. 26 and 27 have not yet been per-
formed. In this paper we present what is to our
knowledge the first experimental realization of an optical
kicked system. We examine the localization properties
in a specific regime near antiresonances of the system.
Resonances and antiresonances in our optical system are
shown to be related to the Talbot effect and were used by
us to adjust critical parameters in the experimental sys-
tem. A short report of the experimental study was given
previously.29

We describe in Section 2 the optical kicked rotor system
and in Section 3 the experimental setup. Then, in Sec-
tion 4 we study theoretically the kicked rotor near anti-
resonance, which is relevant for the present experiment
but is also of theoretical interest in its own right. A dis-
cussion and a comparison between theory and experiment
is given in Section 5. In Appendix A we describe the Tal-
bot effect and its relation to resonances and antireso-
nances, and in Appendix B we present the analytical so-
lution of the linear kicked rotor, following Ref. 30.

2. OPTICAL KICKED ROTOR
In our optical kicked rotor system, schematically de-
scribed in Fig. 1, a free-space-propagating light beam
along the z axis is successively kicked by identical thin
sinusoidal phase gratings. The gratings are parallel,
with an identical spacing z0 between adjacent gratings,

Fig. 1. Schematic description of the free-space kicked optical
system with the array of phase gratings at equidistant locations.
Some of the light paths are shown.
and have aligned phases. In the process the successive
kicks produce high-order diffractions, which tend to in-
crease the beam’s spatial frequency band. Nevertheless,
as we show below, localization in the spatial frequency do-
main, with a characteristic exponential confinement, oc-
curs after several kicks. In the classical regime diffrac-
tion leads to nonlocalized diffusive behavior. This
corresponds to the case in which the light intensities re-
sulting from the gratings’ diffraction are added up instead
of the electric field amplitudes. In our experiment a re-
gime of similar behavior is obtained when the grating
phases are randomly positioned in the system, resulting
in a destructive interference that behaves like the de-
struction of wave coherence.

The transverse (x-coordinate) dependence of the light
electric field envelope c is given, in the slowly varying
amplitude (paraxial) approximation, by the following
Schrödinger-like propagation equation31:

i
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]z
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]2c

]x2 1 k cos~kgx !(
N

d~z 2 Nz0!c, (1)

which includes the kick delta functions’ potential, result-
ing from the phase sinusoidal gratings with a wave vector
kg and an amplitude k, while l is the light wavelength.
Here the coordinate z along the direction of propagation
plays the role of time for the kicked rotor. The intensity
is proportional to ucu2.

In analogy with the case of a quantum kicked rotor, the
Hamiltonian-like operator is

H 5 g n̂2 1 V~x, z !, (2)

where n̂ 5 2i$]/@](kg x)#% is the normalized transverse
spatial frequency operator in the kinetic-energy-like
term, V(x, z) 5 k cos(kg x)SNd (z 2 Nz0) is the propa-
gation-dependent potential energy term, g5 plz0 /lg

2,
and lg 5 2p/kg is the grating period.

Unlike the quantum kicked rotor and the fiber realiza-
tions proposed in Ref. 27, our optical system lacks inher-
ent discrete energy levels in the light transverse spatial
frequency domain. It shares this property with driven
laser-cooled atoms.7,8 However, when the input light is a
plane wave or a broad Gaussian beam, the sinusoidal
grating kicks confine the dynamics to the discrete fre-
quency modes of the gratings’ diffraction orders n (corre-
sponding to the angular momentum of the kicked rotor),
which are coupled among themselves. If the initial mode
is n 5 0, as is the case in our experiment, only modes
with integer n are involved in the evolution. In this pro-
cess the repeated kicks tend to broaden the number of the
diffraction orders. The propagation between the succes-
sive kicks adds extra phases, exp(2ign2), which are qua-
dratically dependent on the diffraction order n. For large
n, this factor behaves like a random number. The result-
ing one-period evolution operator is

ÛKR 5 ~exp 2 ig n̂2!exp@2ik cos~k gx !#. (3)

As a result of the effective randomness of the factors
exp(2ig n2), it turns out that the overall contribution is
weakened, resulting in exponential localization that is
similar to Anderson localization in disordered solids.3–6

Consequently, low n are mostly composed of former low-
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order harmonics, which are added constructively. It is
crucial that the propagator Û is identical for all kicks.
Although exp(2ign2) behave like random numbers, these
are identical for all intervals of free motion. The spread
in the space of the spatial frequency modes (diffraction or-
ders), s [ A^(n 2 ^n&)2&, was calculated by numerical
integration of Eq. (1), which can easily be done by propa-
gation of Eq. (3), step by step, with a fast-Fourier-
transform technique. The results for experimentally re-
alistic parameters are presented in Fig. 2. Geometrical
optics, where intensities rather than amplitudes are
evolved, predicts diffusion in spatial frequency space.
This spread is found to be similar to the one obtained for
phase-disordered gratings, where we add for each grating
N a random phase, wN , such that gn2 is replaced by
gn2 1 wNn. A similar diffusive behavior is obtained for
random g. This corresponds to an experiment in which
the spacing between the adjacent gratings is not accu-
rately adjusted. In the calculations of Fig. 2, as well as
in all the other numerical calculations, the initial state is
n 5 0, corresponding to the experiment, resulting in ^n&
5 0.

For typical aligned gratings, where g/p is an arbitrary
irrational number, one finds in this case that the onset of
localization takes place after 25 gratings. Because of ab-
sorption this localization regime is experimentally inac-
cessible. Near antiresonance, where g ' (2M 1 1)p
with integer M, the onset of localization is immediate.
This regime is also experimentally advantageous, since
the phases of the gratings can be simply aligned at anti-
resonance. It is also of special theoretical interest be-
cause in the vicinity of antiresonance the kicked rotor be-
haves like the two-sided kicked rotor, which has been the
subject of theoretical investigations.32 In the vicinity of
the antiresonance the localization behavior can be ap-
proximated by the exactly solvable linear kicked rotor,30

with a linear dependence on n of the phases in the free-
space-propagation term exp(2it n). This model was
studied previously and was mapped onto a model for elec-
tronic motion in potentials with incommensurate

Fig. 2. Numerical simulation of the evolution of the spatial fre-
quency width s as a function of the number of kicks N, for a clas-
sical system (without interference) that exhibits diffusive behav-
ior (curve a) and for phase-disordered gratings (where we added
for each grating N a random phase, wN , such that gn2 is re-
placed by gn2 1 wNn; curve b). A similar diffusive behavior
was obtained for random g. Confinement behavior is obtained
for ordered gratings, far from resonance or antiresonance (with
g 5 0.74p; curve c) and near antiresonance (with g 5 2.97p, or
d 5 20.03; curve d). For all graphs, k 5 5.94, which matches
the experiment, and the starting state is n 5 0, resulting in
^n& 5 0.
periods.30 Such models were studied extensively in con-
densed matter33–38 and in mathematical physics.39–41

The linear kicked rotor that locally approximates the
kicked rotor near antiresonance was found to exhibit lo-
calization that is stronger than the exponential.30

3. EXPERIMENT
The experimental setup followed the schematic descrip-
tion given in Fig. 1. It can immediately be realized that
the grating positioning, and especially their phase align-
ment, is most crucial. For this reason, we developed a
special technique that gave us access to a specific regime
of localization. This was the vicinity of antiresonances of
our optical system, which are related to half-Talbot dis-
tances.

The Talbot effect,9 described and explained in Appen-
dix A, is the occurrence of optical self-imaging of periodic
images along propagation in free space at multiple dis-
tances of the Talbot length, zT 5 2lg

2/l (g 5 2p).
Thus, when the gratings’ spacing in our system equals the
Talbot length, it is equivalent to the case in which the
free-space propagation shrinks to zero. Then all the
gratings are coherently added in phase, without any
dephasing factor of the space between the adjacent ones,
and the diffraction orders steadily increase with the num-
ber of gratings. This corresponds to a resonance like
state resembling the resonances in the quantum rotor
case. By contrast, the system with grating locations at
half-Talbot distances (odd multiples of zT /2) corresponds
to antiresonance, where any two successive (aligned)
gratings cancel each other. Here the propagation after
the first grating produces at the second grating the same
periodic image, but it is shifted by p, which is then can-
celed by the second grating. This effect of diffraction
cancellation enabled us to accurately adjust the grating
locations and align their phases. We performed the
alignment in a reverse way, from the final (output) grat-
ing toward the first, by checking that each added grating
canceled the diffractions that were due to the former grat-
ing. The accuracy demand in the other alignment pa-
rameters was less critical. Small deviations in the exact
distances between the adjacent gratings, which affect the
phases through gn2, had a tolerance of the order of 0.1
mm for n ; 5.

After the alignment was done we changed the laser
wavelength, l, to move the system away from the trivial
antiresonance state. In the experiment we aligned the
system with the argon-ion laser line l 5 501 nm, with a
spacing of z0 5 (3/2)zT 5 3.832 cm (g 5 3p) for lg
5 80 mm, and made the measurement at l 5 496 nm,
which gave g 5 2.97p. The strength of the kick by the
grating was k 5 5.94. It was important in our experi-
ment to stay near antiresonance because of the limited
number of gratings that we could use. The first reason
for this is absorption. In addition, the gratings’ size be-
comes a more limiting factor as the beam propagates and
spreads in real space in the transverse direction of the
beam, owing to the diffraction. The spot size of the spa-
tially filtered input beam to the system was quite large,
;4 cm, allowing significant interference of the diffracted
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beam as it propagated along the gratings. Nevertheless,
smaller spot sizes were examined, as described below.

The phase gratings in the experiment were prepared by
a holographic method, with 8E75 Agfa-Gevaert plates.
We chemically bleached the plates to obtain the conver-

Fig. 3. Experimental confined spatial frequency spectrum in-
tensity after the eighth and ninth gratings for the ordered (filled
points) and disordered (filled triangles) gratings. The initial di-
rection is n 5 0, within experimental accuracy.

Fig. 4. Experimental spatial frequency intensity width s after
each of the nine kicks (the symbols are the same as in Fig. 3).
sion from amplitude to phase holograms. The size of
each grating slide was 6.5 cm 3 3 cm. The emulsion, or
the gratings’ thickness, was ;5 mm. In our system this
can be regarded as a delta-function kick.27

The spatial frequency analysis of the light was done at
the far field of the output beam. The measurement was
done by a detector array, on which the far field was im-
aged by a large-aperture lens.

The central experimental result is presented in Fig. 3.
It shows the confinement of the light spatial frequency af-
ter the eighth and ninth gratings for the ordered grating
system, as compared with the spread spectrum without
localization for a disordered system, where the gratings
phases were not aligned. The spatial frequency intensity
width after each of the nine kicks is shown in Fig. 4.
Further details, with the analysis and a comparison with
the theory, are given below.

4. THEORETICAL ANALYSIS OF THE
KICKED ROTOR NEAR ANTIRESONANCE
In this section the kicked rotor defined by Eq. (1) will be
studied near the antiresonance, where g ' (2M 1 1)p,
with integer M. We first present the main features of the
dynamics in this regime, which are obtained by numerical
calculations. We then obtain the main properties with
the help of the local approximation of the kicked rotor by
the linear kicked rotor, which is applicable near antireso-
nance.

The long-term localized spectrum (light intensity as a
function of the diffraction order n), calculated numerically
near antiresonance, is given in Figs. 5 and 6. Here we
carried out a numerical calculation propagating a broad
plane wave in the system, kick after kick, with the appli-
cation of the propagator in Eq. (3). It has a fir-tree shape
with a slightly faster than exponential decay, as is given
by the analysis for localization in this regime, which cor-
responds to the linear kicked rotor30 (see discussion given
immediately below). The added plateaus, each of which
is shown in Figs. 5(c) and 6(c), have a more moderate ex-
ponential decay.
Fig. 5. (a) Typical numerically calculated confined spatial frequency spectrum ucu2, with a fir-tree shape after N 5 200 kicks, starting
from a wave with n 5 0. We used k 5 15 and d 5 0.011. Zooms of tree head and one of the plateaus are given in (b) and (c),
respectively.
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Fig. 6. Same as Fig. 5, but for k 5 5.94 and d 5 23 3 (5/501) ' 20.03, corresponding to the experimental parameters.
The results for the spreading near the antiresonance
can be understood from the correspondence with the lin-
ear kicked rotor. Near antiresonance, g 5 (2M 1 1)p
1 dp, where M is an integer (M 5 1 in the present ex-
periment) and d ! 1. For n ! n0 , the local approxima-
tion (1/2)d(n 1 n0)2 ' dn0n 1 C can be made, when
(1/2)dn2 ! 1, and where the constant C 5 (1/2)dn0

2.
Using the fact that exp@2ip(2M 1 1)n2# 5 exp(2ip n), one
can approximately write the free-propagation part of ÛKR
as exp@2ig (n0 1 n)2# ' exp$2i@(p 1 t)n 1 const.#%, where
t 5 2pdn0 . Because of the smallness of d, the param-
eter t varies slowly with the center of the expansion, n0 ,
and will be assumed constant. The resulting local model
can be defined by the one-step evolution operator

ÛLR 5 exp@2ik cos~kg x !#exp@2i~t 1 p!n̂#. (4)

The quasi-energy states of this evolution operator, which
are obtained in Appendix B according to Ref. 30, are

cn~n ! 5 exp@i~t/2!~n 2 n!#

3 ~2i ! un2nuJ un2nuH k

2 sin@~t 1 p!/2#J , (5)

where n is the center of localization and Jn are Bessel
functions. If the Bessel functions decay rapidly, as is the
case when the index is much larger than the argument in
magnitude, the linear approximation holds, since t can be
considered constant in a range in which the Bessel func-
tion varies considerably. Therefore the approximation is
expected to fail where this argument is large, i.e., at the
points where sin@(t 1 p)/2# 5 0 or n0

(l) 5 (2l 2 1)/2d,
where l is an integer. In the regions that are far from
n0

(l) the eigenfunctions fall off locally as Bessel functions,
resulting in the rapid falloff of intensity in Figs. 5 and 6.
Below we analyze individual eigenfunctions and verify in
detail this form of decay. We find that the plateaus in
Fig. 5 are starting from n0

(l) 5 50, 150, 250... @n0
(l) is the

point on the plateau that is the closest to the origin], cor-
responding to l 5 1, 2, 3... for d 5 0.01 ' 1/100. There
is also a plateau around n 5 0, where n ! n0 is not sat-
isfied. In Fig. 6 we used d 5 23 3 (5/501) ' 2 0.03,
and the plateaus start from n0

(l) 5 17, 50, 83..., corre-
sponding to l 5 1, 2, 3... . The width of the plateaus,
Dn0 , can be estimated, from the requirement for the lin-
ear approximation, to hold for some distances (somewhat
larger than Dn0) from n0

(l) . In the vicinity of n0
(l) the ar-

gument of the Bessel functions (5) is approximately

Fig. 7. Widths of the plateaus Dn0 for various values of k and d,
determined by visual inspection of figures like Figs. 5 and 6
(circles), as compared with relation (8), with a 5 A3/p (solid
lines), for (a) d 5 (A5 2 1)/320 and variable k and for (b)
k 5 10 and variable d.
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dA '
k

2pddn
, (6)

where dn 5 un0
(l) 2 n0u, as can be seen from the definition

of t. For a site n to be only weakly coupled to the region
around n0

(l) , where the linearized approximation fails, it
is necessary that un0

(l) 2 nu be larger than the argument
of the Bessel function there. Therefore such a site should
be outside a region of width Dn0 around n0

(l) , which sat-
isfies

Dn0 '
k

2pdDn0
(7)

or

Dn0 ' aAk/d, (8)

where a is some numerical constant, of order unity, that
cannot be found from this crude estimate. This relation
was tested for various values of the parameters, and the
results are presented in Fig. 7. The prefactor was found
to be a 5 A3/p. Within the plateaus exponential decay
was found. The values of the localization length found
from Figs. 5(c) and 6(c) are j 5 38 and j 5 60, respec-
tively.

What is the form of the eigenfunctions of the model (1)
predicted by the linear approximation (4)? For small d,
the linear approximation holds for most n, since the dis-
tance between the regions where it fails grows as 1/d,

Fig. 8. Eigenstates of model (1) for k 5 10 and d 5 51/4096
(solid curves): (a) eigenstate of Eq. (1), centered near the origin,
and eigenstates (5) of Eq. (4), with n 5 0 and s 5 1 (dashed
curve) and n 5 54 and s 5 1/2 (dotted curve); (b) eigenstate of
Eq. (1), centered near n 5 20, and eigenstates (5) of Eq. (4), with
n 5 22 and s 5 1 (dashed curve) and n 5 54 and s 5 1/2 (dotted
curve).
while their width is Dn0 ; A1/d. In the regions where
the linear approximation holds, the eigenfunctions of
model (1) are superpositions of few eigenfunctions of
model (4), centered in regions where the approximation
fails [the values of n in Eq. (5) are in that region]. The
reason for this form is that the rate of decay is determined
by the local properties of the equation, while the position
of the center and the value of the quasi energy are deter-
mined by the normalization condition. To test the local
approximation by the linear kicked rotor the eigenfunc-
tions of the model (1) are compared locally with the eigen-
functions (5) of the linearized model (4). The results are
presented in Fig. 8. The local eigenstates of the model
depend on n and on the parameter t, which depends on
the position n0 . The eigenstates (5) depend on t through
s 5 2 sin@(t 1 p)/2#, which for most n0 values is weakly
dependent on t. In the vicinity of n0

(l) , usu , 1, while far
from these points usu ' 1. We do not know how to deter-
mine analytically the values of n and t for states that
dominate a specific eigenstate of Eq. (1). In the numeri-
cal simulations values of n and t were chosen to demon-
strate the validity of the local approximation for some val-
ues of n and t, which was found to work very well. [A
similar approximation was found for many eigenstates of
Eq. (1).] An analytical method to determine these values
has yet to be developed.

The kicked rotor model near antiresonance is simply
related to the two-sided kicked rotor model near reso-
nance. The evolution operator of the two-sided kicked ro-
tor is

ÛTS 5 exp~2ig2n̂2!exp@2ik cos~kgx !#

3 exp~2ig2n̂2!exp@1ik cos~kgx !#. (9)

The free-motion part of ÛKR near antiresonance can be
written in the form

exp~2ig n̂2! 5 exp~2ipn̂ !exp~2ig2n̂2!, (10)

where g 5 p(2M 1 1) 1 g2 and M is an integer. Using

exp~2ipn̂ !exp@2ik cos~kg x !#

5 exp@2ik cos~kgx 2 p!#exp~2ipn̂ ! (11)

and exp(2i2pn̂) 5 I, one finds that

ÛKR
2 5 exp~2ipn̂ !ÛTS exp~2ipn̂ !, (12)

which acts like ÛTS .

5. DISCUSSION AND SUMMARY
A comparison of the theoretical and the experimental re-
sults is shown in both Figs. 9 and 10. Figure 9 gives the
spatial spectrum intensities after eight and nine gratings,
and Fig. 10 gives the spatial frequency widths s. We
showed, in Fig. 3, the experimental data for the
disordered-gratings case, in which the localization was
destroyed and a flat spread spectrum was obtained, as
compared with the ordered-gratings case that exhibits
confinement. The comparison between the spatial fre-
quency width found in the experiment after each of the
nine kicks and the theoretical predictions given in Fig. 10
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Fig. 9. Experimental spatial frequency spectrum intensity after the eighth [(a), (b)] and ninth [(c), (d)] gratings for ordered [filled circles
in (a) and (c)] and phase-disordered [filled triangles in (b) and (d)], gratings, as compared with the theoretical results from Eq. (1), near
antiresonance, where d 5 20.03, showing localization [plus sign in (a) and (c)] or a spread spectrum away from antiresonance [minus
sign in (b) and (d)], where g 5 A5 2 1, and when intensities, rather than field amplitudes, are used [diamonds in (b) and (d)], which
gives results similar to the case in which the phase of the gratings is random. The results of the linear model (4), for t 5 20.18p (d
5 20.03, n0 5 3; squares), are presented as well.
shows a good agreement, even in the oscillating behavior,
which is characteristic of the vicinity of antiresonances.
The experimental confinement width was s ' 3 –4. Ex-
actly at antiresonance, where each even grating cancels
the spreading that is due to its former odd grating, the os-
cillation of the width as a function of the grating number
has a period of 2 (with values sa, 0, sa, 0, sa,0...), pre-
senting a trivial confinement. Off antiresonance, but
still in its vicinity, there is a more complex variation of s,
as can be seen in Figs. 10 and 4, as well as in the graph
shown in Fig. 2(d). In the experiment we also checked
the possible influence of the finite sizes of the input light
and the gratings. We found no significant difference
when we changed the spot size of the input beam from '4

Fig. 10. Experimental spatial frequency intensity width s after
each of the nine gratings (filled circles), as compared with the
theoretical results of Eq. (1) near antiresonance (plus signs), with
g 5 2.97p, and away from antiresonance (minus signs), where
g 5 A5 2 1. Also shown is the result (squares) in the linear
model with d 5 20.03, n0 5 3, which give s 5 1.92.
to '1.5 cm. However, much smaller spot sizes can affect
and change the diffraction and the strength of the local-
ization effect.

Thus the Schrödinger equation (1) faithfully models the
experiment. The linear approximation works well in the
antiresonance regime, and the behavior there is very dif-
ferent from the one for a typical value of g. The linear
approximation clearly predicts the qualitative behavior
and the correct order of magnitude, but not the detailed
behavior for each grating.

In conclusion, we have presented what is to our knowl-
edge the first experimental realization of an optical
kicked system with localization. In this system, free-
space propagation of light is periodically kicked by thin
sinusoidal phase gratings. Our present study was
mainly concentrated on the near-antiresonance regimes,
where new theoretical properties and experimental re-
sults were obtained.

APPENDIX A: TALBOT EFFECT,
RESONANCES, AND ANTIRESONANCES IN
THE OPTICAL KICKED SYSTEM
Here we present a more detailed description of the Talbot
effect, relate it to resonances and antiresonances in the
optical kicked system, and show the way that we used it
to align the optical system.

As we described above, a periodic image reproduces it-
self, as it propagates in free space, at distances that are
multiples of the so-called Talbot length zT .9 The reason
for this can be seen very easily when the periodic function
c(x, z 5 0) 5 c(x 1 mlg , z 5 0) (m is an integer), with
periodicity lg 5 2p/kg , is expressed as a Fourier series:



1586 J. Opt. Soc. Am. B/Vol. 17, No. 9 /September 2000 Rosen et al.
c~x, z 5 0 ! 5 (
n

an exp~inkg x !. (A1)

Then, as we showed above, the propagation in free space,
in the paraxial regime, adds to each component in the se-
ries the quadratically n-dependent phase factor
exp(2ig n2), where g 5 plz/lg

2, giving

c~x, z ! 5 (
n

an exp~inkg x 2 ign2!. (A2)

When g 5 2pN (N is an integer), as occurs for z 5 NzT
5 N2lg

2/l, we have

c~x, z 5 NzT! 5 c~x, z 5 0 !, (A3)

an exact reproduction of the image. At half-Talbot dis-
tances (odd multiples of zT/2), where g 5 (2N 1 1)p, we
have

cXx, z 5 ~2N 1 1 !
zT

2
C 5 cS x 1

lg

2
, z 5 0 D , (A4)

or the periodic image is shifted by half a period.
In our optical system the kicks with the sinusoidal

phase gratings modulate the light by the periodic function
exp@ik cos(kg x)#, which is composed of, and produces, the
various diffraction orders [with a weight an 5 inJn(k),
according to the corresponding components of the Fourier
series in Eq. (A1)]. Then, in the case of a spacing of zT
between the adjacent gratings, the light that reaches each
grating perfectly matches the grating. Then all the grat-
ings are coherently added in phase, without any scram-
bling factor of the space between them. The situation
here is equivalent to the case in which the free-space
propagation shrinks to zero. This corresponds to a reso-
nance state, and the diffraction orders steadily increase
with the number of gratings.

By contrast, the system with grating locations at half-
Talbot distances (odd multiples of zT/2) corresponds to
antiresonance, where the effect of any two successive
(aligned) phase gratings cancel each other. Here the
propagation of the modulated field amplitude
exp@ik cos(kg x)#, from the first grating to the second grat-
ing, produces a p-shifted sinusoidal image,
exp@ik cos(kg x 1 p)#, which is then multiplied and can-
celed by the phase modulation of the second grating,
exp@ik cos(kg x)#, giving 1. This situation continues to oc-
cur for the rest of the gratings. The effect of cancellation
at antiresonance enabled us to adjust the gratings, as de-
scribed above.

The resonances and antiresonances of our optical sys-
tem resemble those of the ordinary quantum kicked rotor.
At resonance the coherent successive grating kicks pro-
duce a steady spreading and increase of the width in the
spatial frequency domain (or in the diffraction orders’
numbers), and consequently the energy increases in the
quantum kicked rotor case. However, exactly at anti-
resonance, the cancellation of two successive kicks elimi-
nates the spreading.
APPENDIX B: SOLUTION OF THE LINEAR
KICKED ROTOR PROBLEM
In this appendix we derive the eigenstates of the linear
rotor, following Ref. 30. In the linear case the free-space
propagation has a linear phase dependence on n, as com-
pared with the quadratic dependence in the regular case.
This does not describe the real physical behavior of the ro-
tor or light propagation. Nevertheless, as we showed in
the text, the linear rotor locally approximates the kicked
system near antiresonance.

The linear system is defined by the equation

i
]c

]t
5 tn̂ 1 k cos y(

N
d~t 2 N !c, (B1)

where n̂ 5 2i@]/(]y)#. Here we use the dimensionless
variables, t and y, which follow the quantum kicked rotor
notation or correspond to the optical kicked system, by
means of

t 5 z/z0 , y 5 kg x. (B2)

The one-step evolution operator is

Û 5 exp~2ik cos y !exp~2itn̂ !. (B3)

The quasi-energy states are

cn~y, t ! 5 exp~2ivnt !fn~y, t !, (B4)

where vn is the quasi energy and fn(y, t) is 2p periodic in
t and y. These are the eigenstates of Û, satisfying

Ûcn 5 exp~2ivn!cn . (B5)

Taking fn(y, t) just after each kick, one can suppress its
time dependence. Because of unitarity, it takes the form

fn~y ! 5 1/A2p exp@iwn~y !#, (B6)

with

wn~y ! 5 ny 1 (
l

Cl
n exp~ily !. (B7)

Substitution of the quasi-energy states of the form given
in Eqs. (B6) and (B7) into Eq. (B5) yields

2vn 1 wn~y ! 5 2k cos y 1 wn~y 2 t!, (B8)

leading to

vn 5 nt mod 2p, (B9)

C61
n 5 7

k

4i
exp~6it/2!

sin~t/2!
, (B10)

while all the other Cl
n values vanish. Therefore

wn~y ! 5 ny 2
k

2
sin~y 1 t/2!

sin~t/2!
. (B11)

The eigenstates fn can be expanded in plane waves
1/A2p exp(2iny). Since the kicking is 2p periodic in y,
only components with integer (n 2 n) are involved in the
expansion. This expansion takes the form
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fn~y ! 5 exp~iny !(
m

imJmF 2k

2 sin~t/2!G
3 exp$2im@~p2t!/22y#% (B12)

and, in the momentum representation,

fn~n ! 5 Jn2nF k

2 sin~t/2!G~21 !n2n exp@i~n2n!t/2#.

(B13)

Replacing t with t 1 p, one obtains Eq. (5).
In this derivation it was implicitly assumed that t/p is

irrational. For t 5 2p(p/q) (where p and q are inte-
gers), there are q infinitely degenerate quasi energies.30

Note that, for t 5 2pl (with integer l), the solution (B13)
diverges.
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