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A theoretical and experimental study of the temporal response of photorefractive two- and four-wave mixing
processes is given. We examine the buildup and the decay of the output signal and the gratings when the input
signal beam is turned on and off. For two-wave mixing we have performed an analysis that includes the
depleted-pump regime. The experiment was done with a BaTiO3 crystal. The buildup-and-decay behavior is
strongly dependent on the coupling constant and the ratio of the signal and pump intensities. From these mea-
surements we obtain the crystal time constant, which was found to have an intensity dependence with a power
of -0.7. The coupling constant is extracted from the data of the whole dynamic process of buildup and erasure
and not only from the steady-state point, as is usually done. This is the first analytic study, to the best of our
knowledge, for the four-wave mixing decay and buildup. We find that the solution for time-dependent four-
wave mixing processes (the phase-conjugate mirror and the double phase-conjugate mirror) with undepleted
pumps is identical to that for two-wave mixing with unidirectional optical feedback circuits. This similarity
provides a direct way to study the stability properties of the devices. We find, for example, that in the unstable
regime of four-wave mixing a self-pulsation of the output corresponds to the frequency detuning of the unidi-
rectional two-wave mixing oscillator.

1. INTRODUCTION

The basic photorefractive mechanism in crystals such as
BSO, BaTiO3, and LiNbO3 is thought to be well under-
stood. The band transport' and hopping2 models de-
scribe the process in the following terms: Electrons (or
holes) from impurity levels are excited by a nonuniform
light intensity pattern (such as the fringes of two interfer-
ing beams), migrate (by diffusion drift or hopping), and
are caught in traps, creating an internal space-charge
field. Then the electric field induces changes in the index
of refraction (phase gratings), which in turn affect the
light beams that have induced the effect. This gives rise
to interesting self-action features in two-wave mixing
(2WM) and four-wave mixing (4WM) processes, with
possibilities of gain, oscillators, and self-pumped phase
conjugators. 3

Since the overall photorefractive dynamics, including
the wave mixing part, is described by complicated systems
of nonlinear partial differential equations, it is hard to
obtain a general solution. Research has focused mainly
on steady-state properties. Studies of dynamic phenom-
ena have been largely limited to the response of the pho-
torefractive material only, without taking into account the
dynamics of the wave coupling effects. Solymar and
Heaton4 presented the first solution for the temporal be-
havior of the 2WM output signal when the input signal is
abruptly turned on. Cronin-Golomb and co-workers5 6 ex-
tended this treatment to include time-varying signals
with arbitrary Fourier frequency components. Other
studies in 4WM were undertaken by Papen et al. and
Zozulya et al.7 and by Bledowski and co-workers,8 and in
2WM they were performed by Feinberg and Anderson9

and others.1 0 l" More recently, Vachss 2 calculated the
grating buildup for the 2WM process and obtained a de-

pendence of the grating buildup on the coupling constant.
Most of these studies are limited to the undepleted-pump
regime.

In the present paper we present a general theoretical
and experimental study of the dynamics and the temporal
response of photorefractive 2WM and 4WM (Fig. 1). We
derive analytic (to our knowledge, the first one for 4WM)
and numerical solutions that provide an understanding of
the time dependence of the beam coupling, including the
effects of erasing the grating in the material by turning
off the signal and leaving the pump. Such an erasing pro-
cess, which takes place in novelty filters,6 for example, has
not been treated previously to our knowledge. We also
include in our study of 2WM the depleted-pump regime.
We compare our theoretical results with experiments that
we have performed with a BaTiO3 crystal. We also show
an analogy between each of two 4WM schemes-the
phase-conjugate mirror (PCM) [Fig. 1(b)] and the double
phase-conjugate mirror (DPCM) [Fig. 1(c)]-and 2WM in
an unidirectional ring cavity. This analogy is used to
obtain the dynamics and the stability behavior of the
4WM devices. For example, the self-pulsation frequency
in the unstable regime of the 4WM is found to correspond
to the frequency detuning of the oscillation in the unidi-
rectional 2WM case.

Section 2 deals with photorefractive 2WM. We first
derive an analytic solution for writing and erasure of
a grating in the photorefractive material, using the
undepleted-pump approximation. This solution is based
on Cronin-Golomb's theory,5 except that we apply boundary
conditions in the time domain rather than the frequency
domain as he does. We thus obtain a simple analytic solu-
tion for the cases in which the input signal is turned on or
off. In contrast to the solutions presented in earlier
studies, we emphasize the dependence of the dynamic
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Fig. 1. Schematic of (a) 2WM; (b) 4WM in the standard configu-
ration of a PCM, in which two counterpropagating pump beams, 1
and 2, and an input signal, 4, generate a phase-conjugate beam, 3;
and (c) 4WM in the DPCM, in which two nonparallel pump
beams, 2 and 4, generate two other beams, 1 and 3.

solution on the coupling of the waves in the photorefrac-
tive material.

Next, we present a numerical solution to the 2WM prob-
lem for cases in which the signal intensity is not negligible
in comparison with that of the pump. In this solution we
take into account the nonlinearity of the wave coupling
while assuming the material's response to be linear. This
numerical solution permits the calculation of the depen-
dence of the writing and erasure times on the ratio of
intensities of the signal and pump beams. It also predicts
an unusual phenomenon of photorefractive grating build-
up after the signal beam has been turned off.

To conclude Section 2, we compare our analytic solution
with experimental measurements of 2WM in BaTiO3.
This comparison reveals the existence of a photovoltaic
field in the material, which affects the dynamics of the
wave coupling. It also permits us to estimate the gain
coefficient and the time constant of the material simply
and precisely.

Section 3 deals with 4WM in a photorefractive cavity.
We show an analogy between 4WM and 2WM in a unidi-
rectional ring cavity (in the undepleted-pump approxima-
tion). The similarity of the structure demonstrates that
there is an effective feedback mechanism in 4WM even
when there is no external feedback circuit. This analogy
is used to study the 4WM schemes. We present a simple,
analytic solution for the time response of writing and
erasing a phase-conjugate signal in 4WM.

Finally, we present an analytic solution describing the
buildup of oscillation in a DPCM device and calculate the
condition for initiation of oscillation.

2. DYNAMIC RESPONSE OF TWO-WAVE
MIXING EFFECTS

A. Analytic Solution for Writing and Erasing a Signal in
the Undepleted-Pump Approximation
The coupling equations for 2WM in a photorefractive cav-
ity are',5

aA1(z, t) = _ 2 E E(z, t)A4(Z, t), (1)
az G S

aA4*(Z, t) - 70A4*(z, ) = E(z, t)Ai*(z, t),
az G

aEs,(z, t) 1E(z, t) G Al(z, t)A4*(Z, t)

at X T IO

(2)

(3)

where y and G are coupling parameters, X is the time con-
stant of the material, E,, is the internal electric field in
the material, and A1 and A4 are the pump and signal
fields, respectively. The z direction is perpendicular to
the input and output surfaces of the mixing crystal. In
the undepleted-pump approximation we obtain

a2A4 *(z, t) 1 A 4*(zt) _ YA4*(Z = 0.

azat X az X

Following Ref. 6, we obtain the solution

A 4 *(z,t) = exp(-t/1T) > Jm [2(-yZ ) 1

x [am( -)I + bm(-- ) m/2]

(4)

(5)

where the Jm are the set of Bessel functions and am and bm
are constants determined by the boundary conditions.
Unlike the approach in Ref. 5, we set the boundary condi-
tions for Eq. (5) in the time domain rather than the fre-
quency domain so as to derive a simple analytic solution.
In order to obtain the dynamic response to erasure of the
grating, we calculate the strength of the output signal af-
ter the input signal is turned off, assuming the system to
have been in steady state beforehand [with the known
solution A4 *(z) = A4 *(z = 0)exp(yz) A4,0* exp(yz)].
Therefore in this case the boundary conditions are

A4*( = 0, t) = [1 - U(t)]A4 0* = exp(-t/T) E bm t ,
mh=O )M

(6)

A4(z, t = 0) = A4,0[exp(y*z)-1] = m (-Y*Z)

(7)

where U(t) is a step function and A4,0 = A4(z = 0, t < 0).
To simplify the right-hand sides of Eqs. (6) and (7), we
have used the fact that as x -> 0, Jm(x) -> (x/2)m/m!.

Equation (6) can be satisfied for t > 0 only if b = 0 for
all m. If we expand exp(y*z) as a power series and com-
pare coefficients of zm in Eq. (7), then we obtain the fol-
lowing expression for the output signal after the input is
turned off at t = 0:

A 4 *(z, t) = A 4,0* exp(-t/T) > (-1)mJm 2 YZ !)1
m=1 L\- J

(8)

In the same manner we can set boundary conditions ap-
propriate to turn on of the signal at the input to a crystal
with no preexisting gratings at t = 0:

A4(z = 0, t) = A 4,0U(t). (9)

We then obtain
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Fig. 2. Theoretical curves for 2WM describing the normalized
signal beam intensity versus time after the signal is turned off at
t = 0 for various positive coupling constants: yl = 1, 2, 3, 4, and
5. The lowest curve (fastest decay) corresponds to the lowest
yl (=1), and increasing yl decreases the decay rate.
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Fig. 3. Theoretical curves for 2WM describing the signal beam
intensity versus time after the signal is turned off at t = 0 for
various negative coupling coefficients: yl = -1, -3, and -5.
The curve with the fastest decay rate corresponds to the lowest
yl (=-5), and increasing yl (up to -1) decreases the decay rate.

A4*(z,t) = A4,0* exp(-t/T) (- 1)mJm[2-yz

x tm (1m2

Figures 2 and 3 show the temporal change of the nor-
malized output intensity from the crystal after the signal
is turned off at t = 0 as a function of the amplification
coefficient yl, where I is the length of the interaction zone.
Figure 2 shows the response of a photorefractive amplifier
[Re(yl) > 0], while Fig. 3 shows the response of an attenu-
ator [Re(yl) < 0]. In the figures yl was taken to be real
(valid for BaTiO3 without applied electric field and fre-
quency detuning).

In Fig. 2 it can be seen that, as the amplification (yl)
increases, the normalized response becomes slower and
hence the amplification bandwidth decreases. A similar
behavior is seen in electronic circuits. This behavior is
explained by the fact that at high amplifications, even be-
fore the input signal is turned off, the signal energy in the
interaction zone in the crystal is drawn mostly from the
pump beam, which is scattered by the grating inside
the material. Because the grating strength is not altered
at the moment the input signal is turned off, the signal
inside the crystal remains strong initially, and therefore
the output signal drops off slowly.

Figure 3 shows that, when the crystal serves to attenu-
ate the signal [Re(yl) < 0], response times much faster
than the time constant of the material () may be ob-
tained. There may also be damped oscillation even in the
absence of an external electric field. This phenomenon is
explained by the fact that in steady state the signal is at-
tenuated owing to destructive interference between the
signal and the portion of the pump beam that is scattered
by the grating in the crystal into the signal beam. After
the input signal is turned off, the output signal is made up
of only the portion of the pump beam that is scattered by
the crystal into the signal direction, and therefore the
phase of the signal in the interaction zone reverses. The
new signal begins to generate a new grating of opposite
spatial phase compared with that of the existing grating,
leading to rapid erasure of the grating and even to a
damped oscillation. These results demonstrate that one
can control the response time of a photorefractive device,
such as a novelty filter, that is based on 2WM (Ref. 6) by
controlling the amplification coefficient through an
appropriate choice of the mixing angle.

Figures 4 and 5 show the buildup of the output signal
after the input signal is turned on at t = 0 for a number of
different values of yl, both positive and negative. There
is a qualitative similarity to the results in Figs. 2 and 3,
particularly in the fact that the larger the value of y, the
slower the change in the output after the input is turned on.

B. Numerical Solution of Two-Wave Mixing
with Depletion
For cases in which the signal intensity is nonnegligible
and the pump is depleted, the analytic solution in Sub-
section 2.A is not valid, and we have solved Eqs. (1)-(3)
numerically. The assumption in these equations is that
the response of the photorefractive material is linear,
while the coupling between the two beams in the material
is nonlinear. The nonlinearity that does exist in the ma-
terial gives rise mainly to formation of higher-order grat-
ings.13 These gratings do not affect the scattering, since
they do not fulfill the Bragg condition. Nonlinearity of
the material has a negligible effect on the strength of
the primary grating, and we therefore neglect it in our
calculations.
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A(z, to + At) = _ Ai,.(z, to) (t)n, i = 1,4,
n=O

3

E8,(z, to + At) = 2 En(Z, to) (At),
n=O

(11)

(12)
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Fig. 4. Theoretical curves for 2WM describing the normalized
signal beam intensity versus time after the signal is turned on at
t = 0 for various positive coupling constants: yl = 1, 2, 3, 4, and
5. The highest curve (fastest buildup rate) corresponds to the
lowest yl (=1), and increasing yi decreases the buildup rate.
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Fig. 5. Theoretical curves for 2WM describing the signal beam
intensity versus time after the signal is turned on at t = 0 for
various negative coupling coefficients: yl = -1, -3, and -5.
The curve with the fastest buildup rate corresponds to the lowest
yI (= -5), and increasing yl (up to -1) decreases the buildup rate.

Equations (1)-(3) form a system of partial differential
equations dependent on time (t) and position (z). In order
to separate these variables, we perform a Taylor expan-
sion in the time domain:

where Eo(z, to), Ajo(z, to), and A40(z, to) are given by the ini-
tial conditions. In order to find the rest of the coeffi-
cients, we substitute Eqs. (11) and (12) into Eqs. (1)-(3)
and obtain a set of nine ordinary first-order differential
equations dependent on position (z) only. Solving the ap-
propriate set of equations for time to enables us to esti-
mate the electromagnetic fields and the internal field in
the material at time to + At. The numerical results give
the dependence of the response of the system on the ratio
of intensities of the pump and signal beams.

Figures 6 and 7 show the theoretical temporal response
of the pump and signal normalized output after the input
signal is turned off (Fig. 6) and turned on (Fig. 7). Here
X is the time constant after the signal is turned on or off.
As Fig. 6 illustrates, the time needed to erase the grating
depends on the modulation depth of the grating recorded
in the material, which in turn is a function of the beam
ratio. For a weak or strong signal compared with the
pump this modulation depth decreases, so that the erasure
time is shorter.

In Fig. 6 we also see that for strong signals, after an
initial drop at the moment the input signal is turned off,
the output signal rises gradually for a significant period
before it starts to decay. This increase stems from the
fact that at the moment the input signal is turned off,
there is a significant drop in the signal strength in the
crystal, with a corresponding increase in the pump. This
change in turn permits the grating to develop in regions
of the crystal where it could not develop previously be-
cause the pump was too weak. This new grating in-
creases the scattering efficiency of the pump, with a
resultant rise in the strength of the output signal.

Figure 7 shows that the stronger the input signal, the
faster the buildup of the output signal. The decrease in
buildup time stems in part from the fact that a stronger
input signal reduces the grating amplitude required for
maximum scattering of the pump beam into the output
signal to be attained, since the possible energy transfer
from the pump to the signal in this case comes to be
limited not by the strength of the grating but by depletion
of the pump. Moreover, the buildup rate of the grating
increases with increasing modulation depth between the
pump and signal beams in the crystal, as indicated by
Eq. (3). Thus, during most of the buildup process, the
buildup rate of the grating is high, while the grating am-
plitude required for energy transfer from the pump to the
signal is dropping, and therefore the signal buildup time
decreases.

These results explain the long buildup time measured in
Ref. 14 for fanning relative to that of the output signal.
The difference stems from the fact that the strength of
the scattered light that gives rise to the fanning is much
less than the strength of the input signal to the crystal.

C. Experimental Method and Results
In our experiments we used a poled 7 mm x 6 mm x
3 mm BaTiO3 crystal with the c axis along the 7-mm side,
illuminated by an argon-ion laser operating at 515 nm.
The optical setup is shown in Fig. 8. The laser beam was
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extraordinary polarizations. The difference in the opti-
cal path lengths of the pump and signal beams from the
laser to the crystal was -10 cm, considerably less than the
laser's coherence length of -3 m. The pump power enter-
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Fig. 6. Theoretical curves for 2WM describing the normalized
(a) signal and (b) pump intensities versus time for yl = 3 after
the signal is turned off at t = 0 for various ratios of pump-
to-signal intensities: 11/14 = 106 (solid curves), 100 (dotted
curves), and 4 (dashed curves).

split into pump and signal beams, which were focused into
the crystal by two lenses with focal lengths of 150 mm.
The pump beam diameter was -1 mm, and the signal
beam was 0.4 mm at the crystal face. Both beams had
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Fig. 7. Theoretical curves for 2WM describing the normalized
(a) signal and (b) pump intensities versus time for = 3 after
the signal is turned on at t = 0 for various ratios of pump-
to-signal intensities: I1/14 = 106 (solid curves), 100 (dotted
curves), and 4 (dashed curves).
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Fig. 8. Experimental arrangement for measuring the dynamics
of 2WM in the undepleted-pump approximation. (The specified
angles are outside the crystal.)

ing the crystal was varied between 3 and 30 mW. In order
to ensure that the system would be linear, we kept the
input signal power sufficiently low that decreasing it by
50% from its steady-state value would cause an 50%
decrease in the output signal. This criterion led us to
work with weak signals relative to the pump (power ratios
of the order of 1: 200,000). We therefore saw no changes
in the fanning pattern (such as bleaching effects'5 ) in the
course of our measurements. We controlled the coupling
coefficient (l) by changing the angle between the pump
and signal beams (the direction of the signal beam).

In the experiment we measured the temporal response
of the output signal after turning the input signal on or
off by a simple mechanical shutter. We varied the signal
and measured changes in the output only after we first
permitted the system to settle for ten minutes or more
into a steady state. Since the system's response times
were of the order of seconds, we used a pen plotter, con-
nected to the amplified output of a photodetector, to record
the changes in the output signal. The plotter graphs were
sampled and entered into a computer for analysis. We
wrote a computer program to estimate the time constant
of the material () and the coupling coefficient (yl) by per-
forming a least-squares fit of our experimental results to
the analytic solution given in Subsection 2.A. We empha-
size that the fitting was based on common values of X and
yi for the buildup and the erasure processes together for
each geometry.

D. Results and Discussion
Figure 9 compares our experimental and theoretical re-
sults for buildup of the 2WM output signal after turn on
of the input for three values of yl. The figure shows a
good fit between the model and the measurements, except
at the end of the buildup process, where the experiments
show an additional slow buildup (not depicted in Fig. 9).
Here the analytic solution gives a well-defined end to the
buildup, while the experimental results show a long-lived,
additional weak buildup after the primary process is com-
pleted. This additional buildup appears to stem from
weak scattering from additional gratings generated in re-
gions where the pump intensity is weak and from long-
wavelength gratings generated between the signal beam
and the fanning. In our analysis we did not take into
account the interaction between the fanning of the pump
beam and the signal, since this process is slow. The
longer the wavelength of the grating in the photorefractive

material, the slower its response. Because the wave-
lengths of the gratings generated between the signal
beam and the fanning have much longer components than
those of the wavelength of the grating between the signal
and the pump, the effect of the signal-fanning interaction
is felt only at the end of the output signal variation. To
account for the background light due to fanning that
entered our measurements, we added a fixed background
intensity to our analytic results to obtain a good fit with
the experiments.

Figure 10 shows results obtained after the input signal
is turned off (erasure of the grating by the pump). We
fitted the same coupling constants as those obtained for
the buildup process and found good agreement. There is,
however, one point that needs more consideration. Ac-
cording to our original model, at the moment the input
signal is turned off, the output signal should drop immedi-
ately by AI = [exp(y1)j2 - exp(yl) - 112]I4, where I4 is
the input signal strength in steady state. If there is no
electric field inside the crystal, the coupling coefficient
(yl) of the BaTiO3 crystal is real, and there should thus be
a significant immediate drop in output signal when the
input signal is turned off, as shown in the curves in Fig. 2.
For example, for yl = 3.3 the signal should drop by 7.25%.
This large drop is to be expected despite the weakness of
the signal because the scattered pump beam and the sig-
nal before it is turned off are in phase, so that construc-
tive interference significantly increases the signal in the
crystal.

Our experimental measurements of the immediate out-
put signal drop after the input signal is turned off are
much smaller than this theoretical prediction. This dis-
crepancy can be resolved in several ways. One is to sug-
gest that y is complex, owing to the existence of an
electric field in the photorefractive crystal or to detuning

I
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0 2 4
I l

6

t/T
Fig. 9. Experimental and theoretical dependences of the output
signal in 2WM after it is turned on. The fitted coupling con-
stants are yl = 1.72 (highest curve), 2.78 (middle curve), and
3.3 (lowest curve).
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Fig. 10. Experimental and theoretical dependences of the output
signal in 2WM after it is turned off. The fitted coupling con-
stants are the same as in Fig. 9.

of ±8 of the signal and reflected beams with respect to
the pump beams, as given by the equation3

Ed + E Eo + iEd 1
Y o Ed Eo + i(Ed + E) 1 + iT (13)

where Ep = epd/ekg, Ed = kB Tkg/e, kB is the Boltzmann
constant, T is the temperature, e is the electron charge, 
is the dielectric constant, kg is the wave vector of the grat-
ing, and Pd is the trap density. Since our experiment was
performed with degenerate frequencies, an internal elec-
tric field can explain the signal drop. Assuming that Ed =

2 kV/cm and E = 15 kV/cm,3 we can use Eq. (13) to esti-
mate the strength of the needed field as Eo - 0.9 k/cm.
We must note, however, that this is a larger field from the
result in Ref. 3, obtained by frequency detuning of a pho-
torefractive oscillator. However, one can also suggest
that the relatively small cross sections of the interacting
Gaussian beams induce space-charge fields. Other possi-
ble explanations can be based on incomplete coherence of
the beams or on much larger effective coupling (amplifica-
tion) constants, such that the amplification part of the
output is much larger than our calculated values. There
is still a place for a more detailed study of this point.
* In addition to reducing the immediate output signal

drop when the input signal is turned off, the photovoltaic
field also speeds up the increase in output signal when the
input signal is turned on and slows down the output signal
decay when the input signal is turned off. These consid-
erations improve the fit shown in Figs. 9 and 10 between
our theory and experiment.

Finally, Fig. 11 shows the dependence of the estimated
time constant of the material () on the pump strength.
The plot shows a dependence of time constant on intensity
according to

Other researchers have arrived at similar results by dif-
ferent means. 16,1

7

3. DYNAMICS OF FOUR-WAVE MIXING
CONFIGURATIONS

A. Buildup, Decay, and Stability of the Phase-
Conjugate Mirror
Now we discuss the case of 4WM in photorefractive media
in the undepleted-pump approximation, in which the
pumps are the two external counterpropagating beams {Al
and A2 [1 and 2, respectively, in Fig. 1(b)]}. This is the
standard phase-conjugate mirror (PCM) scheme. The
coupling equations for transmission gratings 8 are

ag(z't _ 1 fy
at - g(z, t) + -[A1(z, t)A 4*(z, t)

+ A2*(z, t)A3(Z, t)]} (14)

aA 3(Z, )
= g(z, t)A 2(z, t), (15)

aA4*(Z, )
= g(z, t)A,*(z, t), (16)

aA,(z, t)_ aA 2 (Z, )dal(z~t) = OdAz(Zt = 0' (17)

g(z, t) - 2c cos 0 reffEsc(z, t), (18)

where E8C(z, t) is the internal field in the material, A3(z, t)
is the phase-conjugate beam of A4, o is the optical fre-
quency, c is the speed of light, reff is the effective linear
electro-optic coefficient, 20 is the angle between beams 1
and 4 (2 and 3), and

Io = I + 2,

The boundary conditions are

1.0 

CA

-4

0. 1 -

0

Ii = Ail2.

IlI I I I l l l l

I [ Watts/cm 2 ]
Fig. 11. Experimental dependence on intensity of the estimated
time constant. The fit is of T = TOI-07.
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A2(z,t) = A2 ,

A4 (z = 0,t) = A4(0,t),

E8 (z,t = 0) = E(z,0).

(19)

(20)

(21)

In this subsection we derive an analytic solution for the
temporal response of the phase-conjugate reflected beam
A3(z = 0, t) leaving the interaction zone after the input
signal A4 (z = 0, t) is turned on or off. The coupling
equations (15) and (16) give

0A4 *(z, t)_ A,* A3(z, t) (22)

az A, az

We integrate to obtain

Au*A3(z, t) - A2 A4*(z,t) = c(t); (23)

c(t) is independent of z. At the boundaries,

c(t) = A,*A3(0,t) - A2 A4*(0,t) = -A 2 A4 *(l,t). (24)

Using Eq. (24) in the coupling equations (14)-(18), we
obtain

a2 A3(z, t) 1 aA 3 (Z, t)
Azdt tL dZ + YA3(Z, 0azrat T az

+I AlA2A4*(0, t) - - IA3(0,, (25a)
Iodt Io dz + A4*(z~t)

a2A4*(Z, t) 1 aA4*(Z, t) +y0(,t
azat [ az

+ Y AI*A 2*A3(0, t) - Y I 2 A 4*(0, t)].Io Io~~~~~~~~(25b)

The two equations for A3(z, t) and A4 *(z, t) are separated
and similar. We proceed with one of them, the phase-
conjugate signal A3(z, t), in which we are primarily inter-
ested. We separate A3(z, t) into a homogeneous and a
particular solution:

A3 (Z = 0,t) - 1 2[A 3H(0t) -A 4 (0,t)A 1 A2 1
1A21 [Io

(29)

Then, combining Eqs. (28) and (29) yields

A3H(Z = 0,t) = A4 (, t)AA 2 _ A3H(Z = t) A2F2 (30)A 12 - AA( 1, 1 30

Because the homogeneous solution for the 4WM case is
identical to the 2WM solution in the undepleted-pump ap-
proximation, we can use Eqs. (28) and (30) to draw an
analogy between 4WM and 2WM in an unidirectional
ring cavity as shown in Fig. 12. (A factor of 2 for each
3-dB beam splitter is not included in the scheme.) The
internal loop with the crystal corresponds to Eq. (30) and
is identical to 2WM with a ring cavity and an additional
feedback with a gain (or a loss) coefficient equal to -I2/I1
for the complex amplitude. In the 2WM ring case the real
optical path of the ring cavity determines the phase of the
feedback coefficient. The second outer circuit corre-
sponds to Eq. (28). Because 2WM in a ring cavity has
been thoroughly researched,9

-
22 we can use the similarity

to reach a better understanding of 4WM, as we do below in
this subsection and in Subsection 3.B.

We begin the solution by calculating the constants of the
homogeneous part, {ar} and {b}, for the case in which at
t = 0 we turn on input signal A4 into the crystal, which
initially contained no gratings:

A4 (z = 0, t) = A4,0 U(t) (31)

The constants {ar} are determined by the grating exist-
ing in the material at the moment the input A4 is changed.
In our case, with no gratings existing before A4 is turned
on, the phase-conjugate beam A3 = 0 at t = 0. Equa-
tion (29) then gives

A3H(Z = 0,t = 0) = am m = A4,0 AiA 2

and therefore

(32)

A3(z,t) = A3H(z, t) + A3p(t)- (26)

The homogeneous equation is identical to Eq. (4), which
we derived with respect to 2WM in the undepleted-pump
approximation, and its solution is therefore given by
Eq. (5). The particular solution is

A3P) = ~-A4 *(0,t)AA 2 + 1AlF A3(Z = 0,t). (27)
IO Io

The constants in the homogeneous solution, {an} and {bn},
are given by the boundary conditions.

Before we calculate the constants for our case of turn-
ing the input signal on or off, we show here that in the
undepleted-pump approximation the problem is identical
to the case of 2WM in a unidirectional ring cavity. Using
the boundary condition AA(z = 1, t) = 0, with the help of
Eqs. (26) and (27), we obtain

A 3(Z 0,t) = Io2 [A*O,;AA, - A3(, t)]. (28)

At the other boundary (z = 0), again with the use of
Eqs. (26) and (27), we obtain

am= A4fo*AlA2
Io

a,, = 0 for all m > 0. (33)

To find the constants {bm}, we use a power-series expan-
sion of the Bessel functions:

(34)Jq(X) = 2 ( )m=0 m ( )

A 0(t)

PUMP

Fig. 12. Circuit for the standard case of the undepleted 4WM
(the PCM), which provides the analogy with 2WM in a unidirec-
tional ring resonator. (A factor of 2 for each 3-dB beam splitter
is not included in the scheme.)

Al(z,t) = A1,

A3 (z = ,t) = 0,

Horowitz et al.
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I
1.5 -

I2 A 4,o*AlA2
I, + A 12 '

+ A4AlA2 ()

0.0 

( 1 ) (- 1 b

I I I I I I I I I I I I I I I I I I

D 4 8

t/T
Fig. 13. Normalized intensity of the phase-conjugate beam (I3 in
the 4WM configuration) versus time after the input signal (14) is
turned on at t = 0 for r = 1 and various coupling coeffi-
cients: yl = ±1, ±2, ±3, and ±4. The curve with the fastest
buildup rate corresponds to the highest lyll (=4), and decreasing
lyll decreases the buildup rate.

I
1 .2 ....

0 .8 -1l 1 /~ ~~~~~~~.........
0.8/

0.4- 

n) n r )

= (-l)n+1I2 [()'bb - (__!b.__

+ (yl)bn-2 + *-- + (_1)n(Y1 )nb 1
2! n! -n! n! j

+ A4,o*AlA2 ( 1 n 1
TAhe 2 o the n!

(35)

The time dependence of the phase-conjugate reflection
is then given by Eq. (28):

A 3(z = 0, t) = Io (4,ol _ exp(-t/T) bm

( (t) [ (t )]} I (36)

Figures 13 and 14 show the normalized intensity of the
phase-conjugate signal A3(0, t) during the buildup process
as a function of the coupling coefficient yl (real) and the
ratio of the intensities of the pump beams, r _ I2/Il.
Note that in the above equations the dependence of the
pumps can be expressed by r. It can also be shown (ac-
cording to the argument below of finding the dynamics
from the steady-state solution) that the buildup process for
given real coupling coefficient yl and pump ratio r is identi-
cal to the process for coupling coefficient -yl and pump
ratio 11r.

We now calculate the temporal response of the phase-
conjugate signal at the output of the crystal after the input
signal A 4 is turned off at t = 0, assuming that the system
was previously in steady state, as given by Ref. 18:

A3(z A2A4,o* exp[y(z -1)] -Al* I exp(-,yl) + rJ

liii -1111111 I1111111T
0 4 8

t/T
Fig. 14. Normalized intensity of the phase-conjugate beam (I3)
versus time after the input signal (I4) is turned on at t = 0 for
yl = 3 and various ratios of pump intensities: r = 1/16, 1/4, 4,
and 16. The curve with the lowest buildup rate corresponds to
the lowest r (=0.25), and increasing r increases the buildup rate.

Substituting Eq. (34) into Eq. (30) and comparing coeffi-
cients with the same power of t, we obtain a simple system
of equations for the {b}:

To calculate the constants {a,}, we must determine the
spatial dependence of the phase-conjugate signal after the
input is turned off. At that moment the grating will not
yet have had time to change, and thus if we follow the
previous development, utilizing the analogy between 4WM
and 2WM in a ring cavity, we obtain

a
A3H(Z, t = ) = > ( YZ)m

m=0 m!

= A3H(Z = 0, t = 0-) [exp(yz) - 1]

+ A3H(Z = 0, t = 0). (38)

(The right-hand side is composed of the part of the signal
diffracted from the pump before the change plus the new
signal, without being affected yet by the crystal.) If we
expand exp(yz) in a power series and compare the coeffi-
cients of z"', we obtain

a = A3H(Z = 0,t =0,

am = (-l)'A3H(Z = 0 t = 0-) for m 1. (39)

(37)

-
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II I I I . . I

0 4

t/T
Fig. 15. Normalized phase-conjugate beam versus time after the
input signal is turned off at t = 0 for various coupling coeffi-
cients: yl = 1 (solid curve), yl = 3 (dotted curve), yl = -1
(short-dashed curve), and yl = -3 (long-dashed curve).

We find A3H(Z = 0, t = 0-) by comparing the steady-state
solution (37) with Eq. (29):

A3H(Z = 0,t = 0-) =
A4*(Z = 0, t = -)A2 I2

Al* Io

x exp(-yl) - 1
exp(-yl) + r

+
A4*( = 0, t = 0-)A1A2

Io

A3H(Z = 0, t = 0) is given by Eqs. (37) and (28)-(30):

A3H(Z = 0,t = 0+) -(I2/Io)A3H(z = 0,t = 0)
x [exp(yl) - 1]. (41)

In order to calculate the constants {b}, we insert the con-
stants {ar} that we have already calculated and the power-
series expansion of the Bessel functions [Eq. (34)] into
Eq. (30) and compare coefficients of powers of t [similar to
our method of obtaining Eq. (32)]. Equation (28) then
gives the time dependence of the phase-conjugate reflected
beam (t > 0):

AZ = 0, IoA3 H(I,t) - I exp(-t/T)I, I

m=0 [ T t)

+ b.(_ t )]. (42)

Figure 15 shows the normalized time dependence of the
phase-conjugate signal after turn off of the input signal A4
for various coupling constants. It shows that, when the
input signal is turned off, the nature of the time response

of the output depends on the sign of the coupling coeffi-
cient vl. This behavior differs from the case of turn on of
the input signal, in which the normalized response for
given coupling coefficient yl and pump ratio r is identical
to that for coupling coefficient -yl and pump ratio 1/r.

One can obtain the self-oscillation condition and per-
form a stability analysis of this 4WM system by using the
similarity with 2WM in a unidirectional ring oscillator.
The condition for starting oscillation for a unidirectional
ring is that the overall gain from the crystal and from the
feedback loop be unity. Thus, in our 4WM case, with a
gain factor in the feedback loop of -I2/I, (=-r) (as shown
in Fig. 12), the condition is

exp(yl) (-r) = 1.

Note that the feedback has a negative sign (-r) (an out-of-
phase feedback), and the condition is identical to that of
Ref. 18. For the general instability condition we use the
transfer function for photorefractive 2WM,9 namely,
H(s) = exp[yl/(sr + 1)], find the zeros so of[1 - (-r)H(s)],
and require that

so [l r) in=Re[. + ln(/r)-1>0,
(43)

where n is an odd integer. A similar condition was ob-
tained from a stability analysis in the Laplace plane in
Ref. 7, in the way used in Subsection 3.B for the DPCM.
For the case in which yl is real, the steady-state analysis
predicts no self-oscillation.'8 Our present analysis, how-
ever, shows unstable regions. The minimum coupling
coefficient that will give instability is lyll = 2v when
r = exp(± 7-).

Figures 16-18 show the temporal behavior in the un-
stable region after the input signal is turned on or off. It
is not surprising to find that at instability the system has
a self-pulsation behavior with a frequency that corresponds
to the frequency detuning (with respect to the pump fre-
quency) of the unidirectional ring oscillation2 0 2' to make
up for the out-of-phase feedback. This is described in
Figs. 16 and 17 for signal turn off and in Fig. 18 for signal
turn on. Exactly at that edge of the instability regime,
Re{so} = 0. If we take y = 2r, then r = exp(-Ir), Im so =
+1, and the oscillation frequency is T8 = +1. Figure 16
describes the intensity of the output signal A3 C cos(t/T).
This exactly matches the frequency detuning obtained for
the steady-state unidirectional 2WM (see Refs. 20 and 21).
For parameters that are deeper in the unstable regime,
several oscillation frequencies, which provide the out-of-
phase compensation in steady state and have an overall
gain of at least unity, are permitted.

B. Buildup and Stability of the Double
Phase-Conjugate Mirror
In this subsection we present a derivation of an analytic
expression for the beginning of the oscillation buildup in a
DPCM device.2 3 24 It is also a 4WM process in which the
strong input pumps are the nonparallel propagating beams
A2 and A4. In the undepleted-pump approximation the
pumps are assumed to be constant, and owing to an oscil-
lation process the other two beams, Al and A3, are genera-
ted in the oscillation regime. To analyze the dynamics,
we take a third weak input beam, Al. Then the coupling

Horowitz et al.



2214 J. Opt. Soc. Am. B/Vol. 8, No. 10/October 1991

aA2(z, t) 3A 4(z, t)= =0O
az 8z

ag(zt)_ 1 - g(z, t) + [Al(z, t)A4*(Z t)
at T Io

+ A2 *(Z, t)Aa(z,t) 

where g(z, t) is defined by Eq. (18) and 10 = A212 + IA412.
The boundary conditions are

Ai(z = 0, t) = E(t), A2(z, t) = A2,

A3(z = , t) = 0,

where E(t) is the noise-derived scattering in the material,
giving rise to the oscillation.

By a derivation similar to the PCM case in Subsec-
tion 3.A we obtain

20

t/r
Fig. 16. Normalized phase-conjugate beam versus time after the
input signal is turned off at t = 0 at the edge of the unstable
device [yl = 2, r = exp(-7r)].

Ai(z, t) = A- [A3(Z = 0, t) - A3(z, t)] + E(t),
A,

a2A3(Z, t) 1 [ aA3(z,t) + PYA(Z, t)
aZat T [ az

+ t 4A(Z = 0, t) + Y ~)24 

where p = (2 - I4)/(I2 + I4).
The differential equation for the phase-conjugate signal

is similar to Eq. (25a). There is an important difference
between the two equations, however: The coupling con-
stant in Eq. (25a) is , whereas in Eq. (50) the effective
coupling constant is py. We separate the solution into

I
5

l I ll111111 i l lI l
D 10 20

t/T
Fig. 17. Normalized phase-conjugate beam versus time after the
input signal is turned off at t = 0 in an unstable device (slightly
above the edge, with yl = 6.5 and r = 0.0432). 0-
equations are 3'2 3

aA,(z, t) = g(z, t)A 4(z, t),

aA3(z, t) = g(z, t)A2(z, t),
az

0 8 16
(44) t/T

Fig. 18. Normalized phase-conjugate beam versus time after the
(45) input signal is turned on at t = 0 in an unstable device (slightly

above the edge, with yl = 6.5 and r = 0.0432).

I
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Then, from Eqs. (53) and (54) we obtain

A3H(Z = 0, t) = I AH(Z = 1, t) - I2
14 I

(55)

Fig. 19. Circuit for the undepleted DPCM, which provides the
analogy with 2WM in a unidirectional ring resonator. (A factor
of 2 for each 3-dB beam splitter is not included in the scheme.)

I

1.u

0.5

0.0 -

/ /

/ /

A .

A1- __

Again, as in the former 4WM scheme (the PCM),
Eqs. (53)-(55) show that in the undepleted-pump approxi-
mation the DPCM is similar to the unidirectional ring os-
cillator based on 2WM. The internal loop in Fig. 19 with
the crystal corresponds to Eq. (55) and is identical to 2WM
with a ring cavity and an additional (to the crystal gain)
feedback with a gain (or loss) coefficient of q'= I2/I4.

Note, however, the positive feedback sign in the present
case (in-phase feedback) compared to the negative (out-
of-phase) feedback in the former 4WM configuration. (A
factor of 2 for each 3-dB beam splitter is not included in
the scheme.) One can obtain the self-oscillation condi-
tion and the stability of this 4WM system by using the
similarity with 2WM in a unidirectional ring oscillator.
The condition for starting oscillation without a mirror,

exp(pyl)q-' = 1,

is identical to that of Refs. 3 and 24.
For the general instability condition we again use the

transfer function for the photorefractive 2WM,9 now with
an exponential gain of py: H(s) = exp[pyl/(sr + 1)].
We find the zeros so of 1 - q'H(s) and require that

PR3so = Re(ln q + )27rn ) (56)

where n is an integer. The instability condition for a real
coupling constant (yl) becomes

I l l l l l II I I I I I I I I

0 5 10 I
1-t/T

Fig. 20. Normalized phase-conjugate beam (I, or I3) versus
time in the DPCM after the input signal is turned on at t = 0
for q = 0.5 and various coupling constants: yl = 2 (solid curve),
yl = 1 (dotted curve), yl = -1 (short-dashed curve), and yl = -2
(long-dashed curve).

particular and homogeneous parts:

A 3(z, t) = A3H(Z, t) + A 3 p(t)- (51)

For 2 I4 the homogeneous equation is identical to the
2WM case in the undepleted-pump approximation [Eq. (4)]
with a coupling constant py:

____=I4 E(t)A2A4 *

I4- I2 I4- I2
(52)

0
Using Eqs. (51) and (52) at the boundary z = 0 gives

A3H(Z = O. = I 2A3(z 0, t) _ E(t)A2A4 *
141- 2 141- 2

0
(53)

and from the boundary condition A3 (z = 1, t) = 0 [with
Eqs. (51) and (52)] it follows that

A3H(Z = I,t) = - E(t)A2A4* _ I AZ = ,t). (54)
1 4 1- 2 1 1 A 3 ( = 0 , t

I I

5

I I

10

I I

15

t/T
Fig. 21. Normalized phase-conjugate beam (I, or I3) versus time
in the DPCM after the input signal is turned on at t = 0 for
yl = -1.5 and various input beam ratios: q = 0.05 or 20 (solid
curve), q = 0.2 or 5 (dotted curve), and q = 0.95 or 1.053 (dashed
curve).
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where the constant C is determined by the boundary con-
dition A3(s, z = ) = 0. Now Eq. (60) gives the transfer
function H(s):

H(s) = A(Z = 0,s) _
cE(s)

II

. ,I.1

-i- -@6-4f::/
§ | | | |l~~~

I

1 0

Fig. 22. Normalized intensity of the reflected bea
time after the input signal is turned on at t = 0 in t
an unstable point (close to the threshold) for 
yl = -2.25 (lowest curve), l = -2.3 (middle
Y = -2.35 (highest curve).

1 q'yl< (n q) < -2,1-q

!
where q = I4/I2. In fact, the right-hand side of Eq. (61) is
the steady-state ratio between the output and the input
with the transformation y -> y/(sT + 1). From the gen-
eral gratings equations' it can be shown that such a
transformation for the steady-state solution of any pho-
torefractive system will provide the transfer function or
the Laplace input-output relation. It immediately gives,
for example, the transfer functions for 4WM and 2WM,
calculated in Refs. 7 and 9, respectively.

We can obtain from Eq. (61) and the relation lim, A3
T F___T (z = 0, t) = lim, 0 A3 (z = 0, s) that for a step input

[e(s) - eis] the intensity of the phase-conjugate signal in
1 5 steady state is identical to the intensity calculated in

Refs. 3 and 24. From Eq. (61) we have the poles so of the
transfer function, and we require that Re {so} < 0 to find
the condition for instability. This gives results similar to

n () versus Eqs. (56) and (57).
,he DPCM at When q = 1, Eq. (57) collapses to
7 = 0.5 and
curve), and a2A3(Z, ) [I AZ, t) A3(Z 0,t

azat T az, 2+ E(t)A2A4 * .2J

Analysis of Eq. (62) shows that the system is stable for all
coupling coefficients and thus will not oscillate.

We solved Eq. (50) to derive the buildup of the phase-
conjugate signal in a similar manner to our solution of
Eqs. (25) above. Figures 20 and 21 show the buildup pro-
cess of the phase-conjugate signal in a stable DPCM in the
weak-signal approximation as a function of the coupling
coefficient Re(yl) and the ratio of the pump intensities, q.
Figure 20 shows that, as the amplification approaches the
oscillation threshold, the strength of the phase-conjugate
signal increases and the normalized buildup rate de-
creases. The response for the pump ratio q is identical to
that obtained for the ratio l/q.

Figure 22 shows the buildup process for the phase-
conjugate signal in an unstable device as a function of the
coupling coefficient.

4. CONCLUSIONS

We have derived solutions for the dynamic behavior of pho-
torefractive two-wave mixing (2WM) and four-wave mix-
ing (4WM) when the input signal to the photorefractive
material is turned on or off. We have found analytic solu-
tions for the undepleted-pump (weak-signal) case as well
as a numerical solution for 2WM that is valid for strong
signals, too. In an experimental study with a BaTiO3
crystal we have measured the transient behavior of the
2WM output signal after turning on or off the (weak) input
and found a good fit with our analytic calculations. For
the 4WM schemes (phase-conjugate mirror and double

(57a)

and that for imaginary yl is

(ln q)2 + (2>ir)2 (57b)

with a minimum of (yl) mi, 8.7. We note that the un-
stable system generates a strong phase-conjugate signal,
so that the undepleted-pump approximation is no longer
correct. A steady-state solution in the depleted regime is
given in Refs. 3 and 23 with an oscillation condition ac-
cording to Eq. (57a).

Since a detailed analysis of the DPCM by Laplace trans-
form has not been performed yet, we use it here and show
that it gives the above stability condition. We define

A3(z, s) = f A3(z, t)exp(-st)dt. (58)
0

By inserting Eq. (58) into Eq. (50), we obtain

dA3(Z, ) ( 1 -1y

dz \ + ) =r1 [A3(ZS)(12 - 4)
+ I 4A3(z = 0, s) + (s)A2A4 *]. (59)

The solution of Eq. (59) is

A3(z, s) = C expk I+ )

+ l A3(z = 0,s) + e(s) _lX (60)
14 2 14 - 2

I
30 -

1 5 -

0-

0 5

(62)
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phase-conjugate mirror) we have given an analytic solution
in the undepleted-pump approximation and have shown
an analogy with 2WM in a unidirectional ring cavity,
which provided a picture of the feedback mechanisms and
permitted an immediate stability study of the 4WM
devices.

Our results provide a better conceptual understanding
of the physical processes connected with 2WM and 4WM
in photorefractive materials, particularly the dynamic as-
pects of these processes. In addition, the models that we
have presented should be useful in the development of
photorefractive devices based on novelty filtering, beam
switching and steering, optical computing, and phase
conjugation.
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