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It is shown that photorefractive wave-mixing gives saturable gain, saturable absorption and Kerr-like nonlinear phase retarda- 
tion. An analogy between photorefractive two-beam coupling and two-level atom system is then drawn. We investigate optical 
bistability in a ring cavity, utilizing these phenomena, and compare our results with classical absorptive and dispersive optical 
bistability. 

In classical nonlinear optics, laser beams alter the 
optical properties of  the medium and in turn, the 
propagation of  the beams themselves. Saturable ab- 
sorption, and Kerr effect are examples of  third order 
nonlinearities, which are the origin o f  many inter- 
esting effects, such as self-focusing and self phase 
modulat ion [1].  Adding optical feedback to such 
nonlinear media leads to other properties such as 
dispersive and absorptive optical bistability (OB),  
multi-stability, self pulsation and chaos [ 2 ]. 

The photorefractive (PR)  effect, which is also a 
third order process [ 3 ], differs substantially from the 
conventional nonlinearities in the following points: 
(i)  it is nonlocal, (ii) the effect is dependent on the 
ratios o f  the light beams'  intensities (it is sensitive 
to the visibility o f  the interference pattern, but not 
to the total light intensity which affects only the time 
response), (iii) the material must be noncentrosym- 
metric in order to have nonzero electrooptic coef- 
ficients. The simplest PR configuration, the two- 
beam coupling (2-BC) (shown in fig. 1 ), has been 
extensively studied in the past [4] ,  where it was 
mostly considered and used for its light gain 
capabilities. 

In this work we point out and elaborate on other 
important  aspects o f  this process. We show that 2- 
BC displays saturable absorption and Kerr-like non- 
linear dispersion, which give absorptive-like and dis- 
persive-like bistabilities, when a feedback is added. 
In fact, under the proper conditions, discussed be- 

I, 

Fig. 1. Two-beam coupling scheme. C is the photorefractive crys- 
tal, V a voltage source, and 0~ and 02 are the angles of the two 
beams, It and 14, with respect to the normal to the crystals' face. 

low, the PR 2-BC system can simulate the conven- 
tional nonlinear local effects. 

Fig. 1 describes the basic configuration for 2-BC 
with transmission grating. We consider here non- 
degenerate mixing, and the possible application of  a 
DC electric field on the PR crystal. Our treatment 
follows the guidelines, definitions and notations of  
ref. [ 5 ]. The two waves, denoted by 1 and 4, interact 
in the crystal via the photoinduced grating. The in- 
teraction is described by the following coupled wave 
equations 

dA~/dz= - (y/Io) A~ IA412- a-4~, ( l a )  

d A ] / d z =  (7/lo) A~ IA, 12-~v-A], ( l b )  
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where Aj is the complex amplitude of the j th beam 
( j = l ,  4), Ij is its intensity ( / j= lAj l2) ,  I o ( z ) =  
It ( z ) + I 4 ( z )  is the total light intensity at z, c~ is the 
normalized linear absorption coefficient and y is the 
complex coupling constant, as defined in ref. [5]. 
(Note that these definitions are valid for 01 = 02 in 
fig. 1. ) The physics of the PR effect lies in y and was 
first successfully modeled, via band transport mech- 
anism, by Kukhtarev et al. [6]. With  Aj (z )=  
~/I:(z) exp [i~,j(z)], ~uj (z) =kjz+q~j(z), F =  2Re(y),  
F'  = I m ( 7 ) ,  kj being the jth beam wave vector and 
~0j(z) the additional phase due to the nonlinear pro- 
cess, we obtain from eq. ( 1 ), 

dll F I114 - 2odl = FIj 
dz - Io 1 +11/14 2alj , (2a) 

d 1 4  _ F I114 _ 2ce/4 - - -  
d z -  Io 

FI4 
1 +I4/L 

-- 2ai4 , 

d~01/dz= - F '  I4/Io, 

d~o4/dz= - F '  II/I0.  

(2b) 

(2c) 

(2d) 

The solutions are 

11(z)=I1(0) 
[ 1 +/41 (0) ] e x p ( - 2 a z )  

1 +141 (0 )  exp(Fz)  

exp ( - 2c~z) 
: I 0 ( 0 )  1 +14, (0)  exp(Fz)  ' (3a) 

/4(z) =14(0) 
[ 1 +I14(0)  ] e x p ( - 2 a z )  

l + l l 4 ( O ) e x p ( - - F z )  

exp ( - 2az)  
= I ° (0 )  1 +I14(0) e x p ( - F z )  ' (3b) 

~o~(z)=- ~- ln  l+I41(O)exp(Fz) 
-66 ) ' 

(3c) 

~04(Z)~-.~- ~ l n  l+I i4(O)exp(- -Fz)  
1 +I~4(0)  ' (3d) 

Here 141 =14/11 
F=O, eqs. (3c) 

F' l+I41(O)(l+FZ)_l~_~41(_O_) ~01 (z) = -  T i n  

/41 (0) , /4(0) 
: - F ' 2  1+141(0) - - F  Z lo(O ) , 

a n d  1 1 4 - - - I i / 1 4 .  In the special case of  
and (3d) give 

(4a) 

F' l+I i4(O)(1--Fz  ) 
~04 (Z) = -~ ln  1+114(0) 

= - - F ' 2  114(0) - - F ' z  11(0) (4b)  
1 +It4(0) Io(0) " 

The complex coupling coefficient, Y, is given by [ 7 ] 

f(Eo) (5) 
Y=Y° 1 +izf2 ' 

where 7o is the coupling constant for zero applied (or 
photovoltaic) electric field and degenerate mixing, 
£2=co~-094=0. It depends on the geometry of the 
two beams with respect to the crystal axes, and on 
the specific material parameters [5]. In diffusion 
dominant crystals, 70 is real (the phase shift of the 
grating with respect to the interference pattern is n/  
2). z is the complex time constant of the grating 
buildup, and f (Eo)  is the contribution of the applied 
(photovoltaic) electric field to 7, both given by 

( E d + E p ] ( E o + i ( E d + E , , ) )  
Z=Zo \ ~ }  \Eo +i (Ed +Ep) ' (6) 

f ( E o ) =  \ Ed J \ E o + i ( E d + E p ) J  ' (7) 

Eo is the applied electric field parallel to the grating 
wave vector in the crystal. Eu=apd/(Itkg), Ed= 
kB Tkg/e, and Ep = ePd/(~kg), where Pd is the density 
of traps in the material, a is the recombination coef- 
ficient of  electrons or holes with traps,/~ is electron 
or hole mobility, kB is Boltzmann's constant, T is 
temperature, e is the electron charge, e is the per- 
mitivity of the material, kg is the grating's wave 
number, and Zo is the zero field time response of the 
crystal, which is approximately inversely propor- 
tional to the total power density of  the beams, Io [ 5 ]. 
We note that the phase mismatch due to the non- 
degenerate wave-mixing is negligible in PR crystals, 
as indicated in ref. [7]. 

With a proper choice of  g2 and Eo, for a given 
Zo (Io), y may become an imaginary value. Simple al- 
gebra shows that when 

A> 2 ( E d + E I , ) (  Ed ~1/2 
E. \E-:---i---~oo: ' (8) 

with A = ZoO, two values exist for the applied electric 
field, which makes 7 imaginary, 
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Eo = {A(Ed + E p ) E  u + [A2(Ed +Ep)2E~ 

- 4Ed (Ed +Ep)(Ed  +Eu)  2 ] '/2} 

× [2(Ed +Eu)  ] - '  (9) 

The sign of Eo is determined by the sign oft2 (since 
all the other fields are positive). Practically, the 
smaller value of Eo should be chosen (high voltage 
may damage the crystal). In the case of  real 7, (i.e. 
F =  0), the two beams exchange energy, but their 
phases are not affected, as indicated by (3a-d) .  With 
negligible linear absorption, the expressions (2a) and 
(2b) are very similar to those which describe inten- 
sity amplification and deamplification in a homo- 
geneously broadened two (four) level system 

dlo 27Iv(z) 
dz - 1 +Io ( z ) / I s  ' ( lOa) 

dI~, -6~Iv(z)  
q 

dz 1 +Io ( z ) / I s  
(lOb) 

where 27 and ~ are the amplification and absorption 
coefficients, respectively. Both ~ and & are saturated 
due to upward/downward transitions, caused by the 
presence of the optical field at frequency v, Iv. In the 
PR case, one beam is amplified (signal) on the ex- 
pense of the other (pump) .  This process saturates 
when the signal grows well above the pump. Then, 
the visibility of  the fringes decreases, the amplitude 
of the space charge field decreases and this in turn 
decreases the amplitude of the grating and the cou- 
pling coefficient, ), itself. A difference however should 
be noticed: the saturation intensity in (10a, b) is 
fixed, whilst in (2a, b),  the other beam (I4 for I~ and 
vice-versa) acts as Is, and it is position dependent. 

The case of  imaginary ~,, (i.e. F '  = 0 )  was studied 
only for Kerr-like media [ 8 ]. In PR 2-BC, similar 
results are found: there is no energy transfer between 
the two beams, as can be seen from (3a) and (3c), 
but the two beams experience phase changes due to 
the nonlinear coupling, as they propagate in the me- 
dium. These are given by (4a) and (4b),  and are 
similar to the Kerr effect. In the later, the index of 
refraction is given by n = no + n2 ( I ) ,  where no is the 
unperturbated bulk index of refraction, n2 is the op- 
tical Kerr constant and ( I )  is the average beam in- 
tensity, n2 can be positive or negative, depending on 

the material properties (positive or negative Kerr- 
effect). 

The PR analog to n2 is, from (4a) and (4b), 
(n2)efr=F'2/21t. This factor is multiplied by the in- 
tensity ratio Ij (0) / Io  (0),  (instead of intensity in Kerr 
effect) and by z, to give the nonlinear dependent 
phase change. As y becomes purely imaginary, the 
gratings' phase shift becomes 0 or ~ radians shifted 
with respect to the interference pattern, for the two 
values of  Eo, given in eq. (9). It means that both 
positive and negative Kerr-like nonlinearities can be 
achieved. 

Now we address ourselves to the application of PR- 
2BC to Optical Bistability. This subject was consid- 
ered in several experimental works [9-12],  which 
are based on competition between several coupled 
oscillators. It was also discussed in a few recent the- 
oretical works. In one of them, four wave mixing 
configuration in cubic PR crystals is considered [ 13 ]. 
It numerically shows the possibility of  intrinsic bi- 
stability (O.B. without external feedback). A second 
paper considers two beam couplings in a linear cav- 
ity in the special case of  zc/2 phase shift between the 
interference pattern and the gratings [ 14 ]. Another 
work [ 15] utilizes a configuration which was stud- 
ied above for conventional third order four-wave 
mixing [ 16 ], but the mixer is a PR medium. It also 
shows multi-valued solutions and possible 
bistabilities. 

Traditionally, O.B. is treated with two types of  
nonlinear effects: absorption and dispersion (or 
combination of both) and with two prototype 
schemes: the unidirectional ring and the linear (Fa- 
bry-Perot) cavity, drawn in figs. 2(a)  and 2(b)  re- 
spectively. It was shown, that the .Maxwell-Bloch 
equations, describing the interaction of the field with 
intracavity-level atom system, is simpler to solve for 
the ring cavity [ 2 ]. It eliminates the difficulties aris- 
ing from the presence of standing waves in the linear 
cavity. Figs. 3 (a) and 3 (b) are the two PR-analogs, 
with an added "idler" (beam 11 ) to the "active" beam 
(I4). As will be shown below, the intensity ratio of 
these two beams will play an important role in PR- 
OB. We also allow for the application of an electric 
field on the crystal, as discussed above. 

We analyze here only the ring cavity (fig. 3a), 
where the induced grating is a transmission one, but 
our treatment may be applied (with some modifi- 
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Fig. 2. (a) Bistable unidirectional ring. BS is a beam splitter, and 
M is a mirror. (b) Bistable linear (Fabry-Perot) cavity. 
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Fig. 3. (a) Photorefractive bistable unidirectional ring. (b) Pho- 
torefractive bistable linear cavity. 

cations) to the linear cavity (fig. 3b). The later case 
involves reflection grating, with slightly different 
coupled wave equations [ 17 ], and different bound- 
ary conditions. 

Our O.B. analysis follows closely the guidelines and 
notations of Bonifacio and Lugiato [ 2,18,19 ] who 
treated O.B. in conventional nonlinearities. It en- 
ables a convenient way of comparing our results with 
those of refs. [ 2,18,19 ]. The boundary condition for 
the ring cavity is 

A a ( O ) = x / T A 4 ( i n ) + R e x p ( + i 6 o ) A 4 ( l ) ,  ( 1 1 )  

where T and R are the transmissivity and reflectivity 
of the input and output beamsplitters and 

6o = (0)4 -0)c)/(C/LP), (12) 

0)c = n2zcc/£* is the "cavity frequency", nearest to the 
frequency of the incident field, 094. 50 is the total 
length of the cavity (including l). As discussed above, 
A depends on Io (the total light intensity), through 
to. Thus, 7 is also dependent on Io, which is varying 
with the input intensity. In the following derivations, 
however, we use a constant A corresponding to an 
average total light intensity in the crystal, for the rel- 
evant range of input intensities. This considerably 
simplifies the complicated calculations. We define 
the amplitude ratio, F(z)-A'~(z)/A~(z),  and ob- 
tain from eq. 1 ) the following equation for it 

dF/dz=xF,  (13) 

of which solution is 

F(z) = F ( 0 )  exp(xz) . (14) 

We also define normalized input and output ampli- 
tudes x and y, 

.v:~A4in/ X/-TAI ( O ) , 

x= F( l) =A'~out/,,f TA~ (1), (14) 

(assuming that A 4 i n = A ] i n )  and normalized inten- 
sities y=y2 and X= Ixl 2. Then we find from eqs. 
(3a), (3c), (14) and (15), 

A, (l)/A1 (0) = r/(X) e x p ( - a l )  

X exp{i (F ' /F)  In [ r12 (X) ]}, (16) 

with 

r/(X)-= ( 1 + X _ e x p ( - F I ) ]  w2 
I + X  / (17) 

Now, we rewrite eq. ( 11 ), 
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F(O)=Ty+Rexp(-i6o)[Al(l) /At(O)]x,  (18) 

solve for Y as function of X and obtain our main 
resul t ,  

Y= ( XI T2){ [ e x p ( - F l / 2 )  -R~I( X) e x p ( - a l )  ]2 

+ 4R~/(X) exp[ - (F/2+t~)l] 

X sin 2 [ ½ [ (F'/I') In (exp (FI)FI2(X)) -60]  ] }, 
(19) 

which is the Optical Bistability state equation for the 
PR ring cavity. It relates the normalized output in- 
tensity X to the normalized input intensity Y. 

As in the case of "classical" O.B., some more in- 
sight may be gained by considering the "mean field 
limit" [2 ], in which the intracavity field becomes 
almost uniform in the cavity. In our case, it is ob- 
tained when 

a = 0 ,  y l - ,0 ,  T - , 0 ,  60- ,0 ,  (20) 

with C, the bistability parameter [2 ], redefined for 
the PR case as: C=-yol/2T=const. (instead of C=- 
cd/2T) and O-6o/T= ( c o 4 - o & ) / ( C T / ~ )  =const. 
In this limit, for the special case where Eo=0  (i.e. 
F=2Yo/(l+d2), F '=-yoa / ( l+d2) ) ,  eq. (19) is 
approximated by 

Y=X 1 -  ( I + A 2 ) ( I + X )  

2CA , 2-] / 
+ ~0+ ( l + d Z ) ( l + X ) j  j .  (21) 

The result ofeq.  (21) is almost identical to eq. (31) 
of ref. [ 2 ], where absorptive and dispersive O.B. in 
homogeneously broadened two-level atom system is 
considered. 

Fig. 4 shows the exact solution for the normalized 
output intensity, X, as a function of the normalized 
input intensity, Y, according to eq. (19), for T= 0.01, 
a = 0 ,  yol= -0 .3 ,  A= I and 6o=0.01. The dash-dot- 
ted line is the mean field limit (21). 

Next we consider two special cases: 
( i ) Absorbtive-like photorefractive (PR) optical-bi- 

stability ( O.B. ) 
When E o = d = 0  and w4=w, =o9¢, all the ampli- 

tudes become real. Eq. (19) then gives 
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Fig. 4. Normalized output intensity (X) versus normalized input 
intensity (Y) for the PR bistable ring cavity. Here T= 0.01, a / =  0, 
),o1= -0.3,  A= 1 and ~o=0.01. The dash-dotted line is the mean 
field limit (21). 

Y= ( XI T2){ [ e x p ( - F l l 2 )  -R~I( X) e x p ( - a l )  ]2 

+4Rq(X) e x p [ -  (F/2+a)l] sin2(6o/2)}. (22) 

In the mean field limit, 

Y=X[ 1-2C/(1 +X)  ]2, (23) 

or 

y = x - 2 c x / ( l  + x 2 ) .  (24) 
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Fig. 5. Normalized output amplitude ix)  versus normalized in- 
put amplitude (y). Lines Ca) to (e) are the exact solutions, with 
C=-20 ,  and(yol, T)=(-1,0.025),  (-0.8, 0.02), (-0.6, 
0.015), ( -0 .4 ,  0.01), ( -0 .2 ,  0.005) respectively. Line ( f )  is 
the mean field limit. 
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Fig. 6. Normalized output intensity (X) versus normalized input 
intensity (Y) for Kerr-like dispersive bistability, with T=0.1, 
al=O. 1, F ' l = 2  and 60=0. 

This is exactly the same state equation as in eq. (32) 
of ref. [2] for saturable absorptive O.B. in a ring 
cavity. The bistability condition, the inflection point 
and the extremes of the graph are all the same as in 
ref. [2]. In fig. 5, we take the square root of (22) 
and show how the exact solution approaches the limit 

(24). Lines (a) to (e) are the exact solutions, with 
C = - 2 0 ,  and (70, T ) =  ( -  1, 0.025), ( - 0 . 8 ,  0.02), 
( - 0 . 6 ,  0.015), ( - 0 . 4 ,  0.01), ( - 0 . 2 ,  0.005) re- 
spectively. Line ( f )  is the mean field limit. 

( ii ) Kerr-like photorefractive ( PR ) optical-bista- 
bility ( O.B. ) 

For the set of (E0, zl) which render Y imaginary, 
eq. (19) becomes 

Y= (X/T2) { [ 1 - R  e x p ( - c d )  ]2 

+4R exp(-c~l)  sin2 [ ½ [F' 1/( 1 +X)  +60] ]).  

(25) 

Fig. 6 displays Kerr-like dispersive bistability, with 
T=0.1, a=0 .1 ,  F' l=2 ,  60=0. Multistability is pos- 
sible when sin 2 [ ½ [F' l / (  1 +X)  +60] ] undergoes sev- 
eral oscillations. The number of transitions depend 
only on F'l. Fig. 7 shows multistability for T=  0.1, 
a=0 .05 ,  F ' I=4 0  and 60=0. For the sake of clarity, 
we enlarged the origin area in the inset. 

In summary, our results expand the possible ap- 
plications of the PR 2-BC scheme, as a very impor- 
tant building block in nonlinear optical. We showed 
a very close analogy between PR 2-BC and homo- 
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Fig. 7. Multistability in PR ring cavity. Here T=0.01, od=0.05, F 'I=40 and 60=0. The oscillations near the origin are enlarged in the 
inset. 
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X 

Z 

We have presented here only the simplest config- 
uration. Two-beam coupling schemes, which reflec- 
t ion gratings (Fabry-Perot, ring) and four-wave 
mixing configurations may exhibit similar and even 
richer features. Figs. 8 (a)  and 8 (b)  shows some of 
these possible schemes. The dynamics of the pro- 
cesses involved is also of great interest and is cur- 
rently under  investigation. 
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