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Abstract-The  development of a  theory of four-wave  mixing in photo- 
refractive crystals is described.  This  theory is solved  in  the  undepleted 
pumps  approximation  with linear absorption  and  without  using  the 
undepleted  pumps  approximation for negligible  absorption.  Both  the 
transmission  and  reflection gratings  are treated  individually. The results 
are used to analyze several photorefractive phase conjugate mirrors, 
yielding  reflectivities  and  thresholds.  The  use of photorefractive  crystals 
as optical  distortion  correction  elements and experimental  demonstra- 
tions of several of the passive  phase conjugate mirrors are described. 

1. INTRODUCTION 

T HROUGH the  recent years’ boom in  nonlinear optical 
phase conjugation,  photorefractive  (PR)  materials  such as 

LiNb03, Bi12 Sizo O3 (BSO), BaTi03, and Sr, - xBa, Nb2 O6 
(SBN)  have been assuming  ever increasing  prominence  due to 
their  unique  capability  for  displaying  strong  nonlinear  effects 
with milliwatt  beams over the  entire visible spectrum  and 
beyond. 

In  the  late 1960’s it was noticed  that  certain  frequency 
doubling  crystals  were  subject to  “optical  damage”  character- 
ized by degraded phase matching  due to light  induced  changes 
in  refractive  index [ 11 - [3] . These index variations  persisted 
in  the  dark,  sometimes  for  many  months,  and could  be erased 
by  flooding  the crystal  with  uniform  illumination. That  the 
effect  could  actually  be  put to use  was noticed  by  those  inter- 
ested  in  real-time  volume  holography who  thought to use PR 
materials as very dense  optical  memories ( ~ 1 0 ”  bitslcm’) 
and  for  real-time  optical  information  processing  [4] - [21]. 
Concurrent  theoretical  developments involved both investiga- 
tion  of a) the physical  mechanism  whereby  light  intensity was 
converted to refractive index variations  and b) the  optical  non- 
linearities involved in  the beam  coupling  due to  the self- 
developing  hologram [22]  -[34]. While no  true  third-order 
constitutive  nonlinearity was involved, the  diffraction  of  two 
beams  into  each  other  by  the very  grating they  wrote resulted 
in  strong  third-order  interactions.  The physics of the  PR  effect 
is such  that  the  index grating is often 7r/2 out of phase in 
space with  the  interference  pattern  and  one beam is coherently 
amplified at  the expense of  the  other.  The  implications  for 
coherent  optical processing are  clear. 
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In  the mid 1970’s the field of phase conjugate  optics [35] 
began to prosper  because  of  potential  applications in aberration 
correction.  The main  problem to be  faced was and still is the 
development of fast  media  with large nonlinearities. While 
phase conjugation  by four-wave mixing is often  thought  of 
in  terms of nonlinear  optical  susceptibilities, the  formal 
analogy with real-time  holography [36] has  made  it clear that 
PR materials  could be  used effectively  in  phase  conjugation. 
As a  result,  a  whole new branch in phase conjugate  optics  has 
been  developed E371 -[40]. High reflectivity  phase  conjuga- 
tion  with low-power lasers has  become  an easy task.  Feinberg 
has  demonstrated  a  resonator using a PR phase conjugate 
mirror [41], and  many new nonlinear  optical devices  have 
been demonstrated including ring oscillators by White et al. 
[42]  and passive phase  conjugate  mirrors (PPCM’s) by Cronin- 
Golomb et al. [43]  -[45], Feinberg [46],  and Odulov  and 
Soskin [47]. 

Among the  PR materials that we  have  used so far, we find 
BaTi03 (first used in four-wave mixing by Feinberg et al. 1321 ) 
and SBN (first used in  four-wave  mixing by Fischer et al. [48] ) 
most  suited to experiments  where large coupling  strengths  are 
required  since they have  very  large electrooptic  coefficients. 
The main  disadvantage  of  these  materials is their slow response 
times,  typically  about 1011 s where I is the  total  intensity of 
the interacting  beams in mW/mm2. One  main research direc- 
tion in the  future is going to be optimization  of  this  time; 
much  work  has already  been  done  with LiNbO, where the 
use of  reduced  iron  impurities  seems to be  effective [49]. 

In this  paper we will describe the  more  recent developments 
in the use  of PR materials in phase conjugation  and  other 
applications  of  nonlinear  optics.  Section I1 details the coupling 
mechanism for  two-  and four-wave  mixing in  PR materials. We 
present the  four-coupled wave equations  and solve them in the 
undepleted  pumps  and single grating  approximations.  The 
effects on phase conjugation of the  spatial phase shift  between 
the  index grating  and the light  interference  pattern  are discussed. 
In Section 111 we obtain  solutions  in  which  no use  is made  of 
the  undepleted  pumps  approximation. We describe the  multi- 
stability  that results  from  considering the full  nonlinear nature 
of the  problem.  In  Section IV we explain the  application  of 
the  theory  to  the new  PPCM’s and  show  the results  of  experi- 
mental  demonstrations o f  these devices. We also introduce 
novel interpretations  of  PR crystals  as distortion  correcting 
elements  in  optical  systems  and  circuits  and as double phase 
conjugate  mirrors.  Section V is a  summary. 
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11. COUPLED WAVE EQUATIONS AND UNDEPLETED PUMPS 
APPROXIMATION THEORY 

Microscopic  theories of the  photorefractive  effect generally 
treat  photoionization of charge  carriers  from impurity levels. 
These  carriers are subject to drift  and  diffusion  in  the  spa- 
tially  varying  intensity  of the recording  beams  and the elec- 
tric field  associated  with the  resultant space  charge operates 
through  the  electrooptic  effect  to  modulate  the  index of 
refraction.  This  effect is nonlocal,  with  one  manifestation 
being that  the  index grating i s  not  in phase with  the  interference 
pattern.  For this  reason, phase conjugation by degenerate 
four-wave  mixing in PR crystals is different  in  kind  than phase 
conjugation in other media  and we cannot characterize the 
medium  response by  a simple constitutive  third-order  nonlinear 
constant x ( 3 ) .  The  derivation of the  coupled wave equations 
with  the associated  effective  third-order  nonlinearities is as 
follows. 

The basic interaction  geometry is illustrated  in Fig. 1.  Four 
waves of equal  frequency w and, for  simplicity, of the  same 
polarization  are  propagating  through  the  PR  medium.  Let  the 
electric field amplitude associated with  the  jth beam  be 

Ej(r, t)  =Ai ( r )  exp [i(ki. r - at)] + C.C. (2.1) 

We solve the  problem in steady  state so that  the Ai may be 
taken to be time  independent.  The  propagation  directions 
come  in  two  oppositely  directed  pairs, kl = - k2 and k3 = - k4, 
whereas the relative direction  of kl and k4 is arbitrary. 

It is the fringes in  the  time  independent  part  of  the  light 
intensity  that  generate  the  hologram, whose fringes  have the 
same periodicity as the light  interference  pattern.  In  general, 
the  holographic fringes of  refractive  index will have a  spatial 
phase shift with respect to  the interference  pattern, so we can 
write the  fundamental  components  of  the  intensity  induced 
grating as 

n1eiVI @?A4 "A&) 
n = n o + -  exp (ikI . r )  + C.C. 

2 IO 

+ nIIIeipIII (A l ~ ; )  

2 IO 
exp (ikIII r)  t C.C. 

where 

ro = zi 
4 

j =  1 

with Ii the  intensity [Ail2 of beam j .  Through  this  normaliza- 
tion  by 1, we anticipate  that  the  coupling  strengths in the  PR 
effect are approximately  independent  of  total  intensity, in 
direct  contrast  with four-wave  mixing via nonlinear  polariz- 
abilities. The phases rpI, pII, pIII, and qIV are real and nI ,  nII, 
nIII, and nIv are  real  and  positive. kI = k4 - kl = k2 - k3,  
kII  = kl - k3 = k4 : k z ,  kIII = 2 k l  and kIv = 2k4.  The  com- 
plex constant nIezvl as an  example,  characterizes the  spatial 

PHASE CONJUGATE,,' 
A, '8 

/ /  
PROBE 

/ A 4  

Fig. 1. Four-wave  mixing  arrangement appropriate t o  phase  conjuga- 
tion  showing  the  pump beams  (solid)  and  probe  and  phase  conjugate 
beams (dashed), as well  as the  relative  orientation of the c-axis of the 
crystal. 

beams 1 and 4 and also that  of beams  2 and 3. These two 
pairs of waves are  characterized by  the same constant because 

The  expressions  for  these  various  constants  are  obtained  by 
solving the specific  physical  process  responsible for  the  holo- 
gram formation. Expressions for nI and cpI, for  example, 
derived from  a  typical  rate  equation  model  are  [31] 

k4-  kl =k2 - k 3 .  

where no is the  ordinary refractive index, reff is the relevant 
electrooptic  coefficient, E,, is a  superimposed  spatially  uniform 
electric  field,  either  applied or  intrinsic  (due, e g ,  to the 
photovoltaic  effect [7] ) directed  along k I ,  and Ed and Ep are 
electric  fields  characteristic of diffusion and  maximum space 
charge,  respectively. Ed = kBTkI/e  and Ep = epd/(ekI) where 
pd is the  density  of  traps in the  material, kB is Boltzmann's 
constant, T is the  temperature, e is the  electron  charge, e is 
the  permittivity  of  the  material  and  kI = IkI 1. The  electrooptic 
coefficient is  given by 

= eii(rijkkIk) Ejj/(kIninh) (2.6a) 

where nh is ne or no depending on whether  the mixing beams 
are of  extraordinary  or  ordinary  polarization.  For  crystals 
of  the  point  group 4 mm  such as SBN and  BaTi03,  the  non- 
zero  electrooptic  coefficients  and  their  conventional  contracted 
notations are Y,,, Y ~ ~ ,  rxxz = ryVz = rI3, and ryZy = r,,, = 
~ 4 2 .  Equation  (2.6a)  reduces to 

- - 

Yeff = ~ 1 3  sin [(a + 0)/21 (2.6b) 

for mixing  beams  of  ordinary  polarization and 

reff = {nzr33 sin a sin 0 + 2 n z n i ~ 4 ~  cos2 [(a t p)/2] 

+ n$v13 cos a cos 0) sin [(a + 0)/2] /(nen2) (2 .6~)  

for mixing  beams  of extraordinary  polarization  where a and p 
are the angles of  the  pump beams and  the  probe  and phase 
conjugate  beams  with  respect to  the  optic axis of  the  crystal 
as shown  in Fig.  1. The rii are the  electrooptic  coefficients 
and no and ne are the  ordinary  and  extraordinary refractive 
indexes,  respectively. 

hologram  written by  the  intensity  interference  pattern  of In BaTi03  the large electrooptic  coefficient [SO] is ~ 4 2 .  To 



14 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-20, NO. 1, JANUAKY 1984 

observe the largest effects  it is  necessary to use extraordinary in e ~v 
polarization  and to orient  the  crystal so that  the grating wave (A3*A4)A3 
vector is not parallel to any of the crystal  axes.  In SBN, on IO 

the  other  hand,  it is r33 that is  large [48] mjv) .  While 2c 
it is still necessary to use extraordinary  polarization,  the  grating 
wave vector can here  be  parallel to the  optic axis of  the 
crystal. WhenA3 and A ,  are taken to be zero  in  the  above  equations, 

Now, by using (2.2)  in  the wave equation we  recover the well-known theory  of  holographic  two-beam 
coupling [ 2 6 ] ,  [31]. There too,  the spatial phase difference 

V 2 E  f k2E = 0 (2-7) pI between  the light  interference  pattern  and the  index  grating 

- -  COS 9 2  a2A4. (2.8d) 
w 

we can derive the following  four-coupled wave equations  by 
the  standard slowly varying field approximation [50] , [51] 
and  with a1 = 01jcos 8 and a2 = ajcos tI2 where 01 is the linear 
absorption  and 9 ,  and O2 are  the angles of pump  1  and  probe 
4 with  respect to  the normal to  the crystal  surface. 

plays an important role. Its sign determines  the  direction 
of energy  transfer  from  one beam to the  other. It introduces 
an asymmetry  that allows one beam to be amplified by con- 
structive  interference  with  radiation  scattered by  the grating, 
while the  other beam is attenuated  by  destructive  interference 
with  diffracted  radiation.  In  the  present analysis of phase con- 
jugation, we will show  that  this leads to an asymmetry  be- 
tween  the  effects of  the counterpropagating  pumping  beams 2c dAl - inre-i9~ - cos 61 - - - (AlAZ  +AL43"4 

0 dz IO 1 and  2. 

in rIe 'V 11 
- -__. (A1-4 + A 2 4 ) ' 4 3  The Transmission  Grating in the Undepleted Pumps 

IO Approximation 

(2.8a) 

2c + - cos 41a1A2 (2.8b) 
w 

The  problem  may be simplified by making two  assumptions. 
First, we consider a holographic  system  whose  spatial  frequency 
response is such  that  of all the gratings  present in the  system, 
only  one gives  rise to strong  beam  coupling.  This  predominance 
of one  grating is enforced in most practical  situations  by  a 
choice of the  directions,  polarization,  and  coherence  relation- 
ships of the  four beams relative to  the crystal  axes  and to  the 
application in some cases  of an  electric  field  that  enhances 
certain  gratings.  Here, we consider the case  of the transmission 
grating  where only nI is nonzero. In addition, we make  the 
assumption 6 ,  = a2 so that a1 = a,, and we may  drop  the 
subscripts on  the a and the 8 .  The  equations  reduce to 

(2  .sa) 

dA 

dz 
- - _ -  

+ 
jnIve-iPIV 

10 
(A3AZ)A4 where we  have defined  the  coupling  constant y by 

iwnIe-@l 

2c cos 9 ( 2 . 8 ~ )  7' 

( 2 . 9 ~ )  

(2.9d) 

(2.10) 

Secondly,  in  this  section, we make use of the  undepleted 
pumps  approximation  in  which I l  , I ,  >> 13, Z 4 .  In  this case, 

A3A4,  and can be  neglected. With these  approximations  and 
boundary  conditions  appropriate  for phase conjugation, 

2c dA4 - inIeiVI 
w dz IO the  nonlinear  terms  in (2.9a), (2.9b) are  of the  order  ofA2  or - cos 8Q2 - - - ___ 

inIIeiVII 

( - 4 2 4   + A 2 A L 4 1  

(AlA: 'AZA4)AZ 
IO [A3(Z) = 0 and AZ(0) known],  the solution of  (2.9) is 
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where 

(2.1 la) 

(2.11b) 

(2.1 IC) 

(2.1 Id) 

(2.12) 

LOG PUMP RATIO 

where r is  the pump ratio 1, (Z)/I1 (0) and 6 is the normalized Fig. 2. Phase conjugate  intensity  reflectivity  as  a  function of pump 
ratio 12(l)/Z1(0) for coupling  constant yl  = ?3 and for various  values linear absorption air. The phase  conjugate  reflectivity is thus of the linear absorption to y: 2 = a/r. 

(2.13) = l r / 6 :  1 Y P  = 3.627 
, I  

I \  
In Fig. 2 we plot  the phase  conjugate  intensity  reflectivity 
R = lp12 as a function  of  pump  ratio  for yZ = +3 and  for vari- 
ous values of  the  normalized linear  absorption 2. We see that In R 
the  effect  of increasing  linear  absorption is primarily to de- 
crease the  reflectivity,  with  the greater decrease  being for 
negative yl. We observe too  that  the  reflectivity  for  zero 
absorption is unchanged  under  the  transformation r-+ l / r  
and y -+ - y. This  means that  probe  beams traveling in  opposite 
directions to each  other will experience the same reflectivity 
from a given PR phase conjugate  mirror.  This is of consider- 
able  practical importance in the design  of various  optical 
resonator devices based on four-wave  mixing in PR crystals. Fig. 3. Phase  conjugate  reflectivity for coupling  strength 71 = -3.627 

The  integration  for  the  function J can be  explicitly  performed and  peaking  from  left to  right, 'P = 0, n/6, d 3 ,  and n/2. Mirrorless 
when 6 is zero.  In  that case, the  solutions given in  (2.11) 

4 -  

self-oscillation  occurs here for 9 = n/6 and r = 6.13. 

reduce to 

so that  the reflectivity is simply 

we observe  here is that  with  the  nonzero phase shifts  common 
(2.14~) in PR four-wave  mixing the intensities  of  the  pumping  beams 

should  be  unequal  for  optimum  reflectivity.  This is in  direct 
(2.14b) contrast  with  the  situation familiar in four-wave  mixing in  media 

with a  local  response  where the intensities of the  pumping 
(2 .14~)  beams  should be equal.  Also,  with  the 90" phase  shift common 

in our  crystals, we find  that self-oscillation is not possible. How- 
ever, by  detuning  the  probe beam from  the  pump  beams,  the 

(2.14d) holographic phase shift is changed since the slowly responding 
grating lags behind  the moving interference  fringes.  Recently, 
Lam pointed  out  that  this  departure  from 90" phase  shift  can 
cause self-oscillation [53]. This is shown  here  in  the  graph  for 
phase shift ~ / 6 .  We should also mention  that  the phase can  be 
adjusted  by  applying  an  electric  field;  in  that  case, self-oscilla- 

(2.15)  tion  should again become  possible. 

The  Reflection Grating in the  Undepleted Pumps 
Approximation 

When the  phase  shift is zero  and  a)  the  magnitude of the  cou- The  results  above  were  derived with  reference to the case nI 
pling strength  crystal  length  product is T, and  b) the pumping nonzero  where  experimental  conditions were  such that  the 
beams  are of  equal  intensity,  the  reflectivity  becomes  infinite, interference of beams 1 and 4  and  beams  2  and 3 induced  a 
corresponding to  the self-oscillation  effect [52] : we have finite transmission  grating.  If  instead,  because of changes  in the rela- 
output  for zero  input. Fig. 3 is a  graph of the reflectivity  for tive coherence  of  the  interacting beams or because  of  different 
various  phase  shifts.  In  each case the magnitude of the coupling crystal orientation,  it is the  interference  between  beams 1 and 
strength  length  product is the same. The  most  important  feature 3 and  beams  2 and 4 that is effective  in  hologram  writing, then 
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a  reflection  grating will result.  This is described  in the  coupled 
wave equations  (2.8)  by  taking nII nonzero, all other coupling 
constants being negligible. The applicable  coupled wave equa- 
tions  reduce to 

where  the  coupling  constant y is now given by 

-iwnIIeipII 
Y =  2c cos 9 

(2.16a) 

(2.16b) 

( 2 . 1 6 ~ )  

(2.16d) 

(2.17) 

So that we may  compare  the results for  the transmission and 
reflection  gratings  more  closely, we rename the beams without 
changing the physics: A I  + A 3  + A 2  + A 4  -+Al (Fig. 4). It 
will now be easier to look  for basic differences  and  similarities. 
The  only change has  been the  direction of the  crystal  surfaces. 

dA1 - (A1AZ + A 5 1 3 ) A 4  - &A1 (2.1 sa) 
dz 10 

2.0 

Z ' 4  

I 3 

2 . 0  

2 = l e  

dAg Y ( 4  
- (A IA:  + A;A3)A3Y + &A; 

dZ Io 
(2-18b) Fig. 4, A transformation  to  facilitate  comparision  between  transmission 

and  reflection gratings. (a) The reflection  grating.  (b)  The  reflection 
grating  rotated 90". (c) The  rotated  reflection  grating  with  renamed 

(2.18c) beams is now  directly  comparable to  the transmission  grating.  (d) 
- -  

The  transmission grating. 

dAz Y - _ -  - (A1A4* + A ; A 3 ) A ;  - aA:. (2.18d) 
dz Io 

The close similarity  between the  coupled wave equations  for 
the reflection  and  transmission  gratings is readily apparent. 
The  only  difference  between  them is the sign  of the  nonlinear 
termsin thepurnpequations(2.9a),(2.9b)and(2.18a):(2.18b). 
It follows  immediately  that  the results  for the transmission 
grating and  the reflection  grating are the same in the  undepleted 
pumps  approximation. As we show  in the  next  section,  how- 
ever, the inclusion of pump  depletion  introduces  important 
differences  in the behaviors  of the  two  types of grating. COUPLING STRENGTH YP 

3 

111. EXACT SOLUTION OF THE COUPLED WAVE 
EQUATIONS WITH NEGLIGIBLE LINEAR ABSORPTION 

Four-wave  mixing  coupled wave equations  with  pump  deple- 
tion were  first solved in 1979 by Marburger  and Lam who used 
a Lagrangian method [54], [55]. Subsequently,  graphs of 
phase conjugate  reflectivity much like  those  shown  in Fig. 5 
were produced [56] . This solution,  however, could not accom- 
modate  the  photorefractive phase  shifts  between  interference 
pattern  and  index grating. It was  also only  strictly valid for 
collinear pump and  probe. In that case, extra  polarization 
terms  arose  in the  coupled wave equations which  spoiled the 
phase conjugate nature of the reflected signal. Since then, 
Kessel and Musin  have presented  a  solution  for a very  general 

Fig. 5 .  Reflectivity of a PR  phase  conjugate  mirror versus  coupling 
strength  magnitude Iyl l .  The  incident  pump beams  are of equal 
intensity (v = I), the  intensity of the  incident  probe beam is 20 per- 
cent of the  total  incident  pumping  intensity  and  the  phase  shift 
between  index grating and  the  interference fringes is 5" .  The  four- 
wave  mixing is  via the  transmission grating. 

class of  nonlinear  parametric processes including  four-wave 
mixing [57]. This  solution  does  not  require  the  finding of 
conservation laws for  the decoupling of the  equations.  How- 
ever,  it is still only valid for  local  nonlinear  susceptibilities. 
In the paragraphs  below, we find  solutions  for  a  system  with 
nonlocal  susceptibilities, the  photorefractive crystal.  It  should 
be  pointed out that all of these  analyses derive the  intensities 
and  not  the phases  of the various  beams. The  effects of 
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strong  nonlinearities on  the phases of  the  output beams  are 
not  yet  understood,  and are the subject  of  current  theoretical 
efforts.  These  effects will be  important in considerations  of 
the  faithfulness  of phase  conjugation and  the performance of 
resonators  employing  phase  conjugate  mirrors. 

The Transmission  Grating 
We develop  here the  exact  solution of  (2.9)  for  four-wave 

mixing  in PR media  by the transmission  grating  with negligible 
linear  absorption [58]. The  first step is to write  down  a  set  of 
conservation laws. 

and  D and E are constants  of  integration. 
At  this  point,  the  problem has  been  transformed  from  a  set 

of nonlinear  differential  equations  (2.9)  to  another set of 
equations  [(3.1)  and  (3.4)]  which  may be solved by  fitting 
boundary  conditions  appropriate to  the particular device 
under  consideration. 

We will first  describe the  application of  this  theory to  the 
derivation of  the reflectivity  of  a  phase  conjugate  mirror  with 
externally  provided  pumps.  In  this  case,  the  amplitudes of all 
beams  at  their  respective  entrance  faces  are known. 

We observe  first  of  all that  the power flux A = 12(Z) - Zl (0) - 
14(0) is known so we need  only solve for D,  E,  and c to  finally 
obtain  the phase  conjugate  reflectivity. The  starting  equations 
are the values of (3.4)  at  the  boundaries z = 0 .and z = 1. The 
conservation law (3.la) is also used to express the  unknown 
field  quantities Al(Z)  and A:(O) in terms  of c,  A 3 ( 0 ) ,  and 
known fields 

(3.la) 

(3.lb) 

I1 t 1 4  = dl ( 3 . 1 ~ )  

Z2 t I3 = d2 (3.ld) 

where c1 E c, c 2 ,  d l ,  and dz are  constants  of  integration. 
These  relations may be  checked easily using the coupled wave 
equations. 

With the  help of these  conservation  laws, (2.9a)  and (2.9b) 
with  zero  absorption  can be decoupled  from (2 .9~)  and  (2.9d). 

(3.9c) 

(3.9d) (3.2b) 

The procedure  used to solve the  equations is 
1) Solve for E in terms  of lc12 using (3.9~).  (3 .2~)  

E = (*)lt2 e p l =  A t (A2 t 41c12)1/2 ) ef i l .  (3.10) 
A - (A2 t 4 ) ~ 1 ~ ) ' / 2  (3.2d) 

2) Solve for p in terms  of lcI2 using (3.9d) and (3.10). 
By eliminating the  term  in Il t 1, between  (3.2a) and (3.2b), 
and  the  term in 4 + I4 between (3 .2~)  and  (3.2d), we find  the 
following  expressions  for A 12 E A / A  and A 3 4  E A /A,*. 

(3.1 1) 
- 2cT 

= AT t (Az t 4 1 ~ 1 ~ ) ' / ~  

(3.34 
where T = tanh p l .  

3) Solve for D in terms of lcI2 using (3.9a). 

D = (  
A t  (A2 t + 2lcl / ( "> e@'.  (3.12) a - (a2 t 4 1 ~ 1 ~ ) ~ ' ~  + ~ ) c ) ~ / I ~ ( z )  (3.3b) 

Noting that Zo is  constant  because  of  the  conservation laws, 
we  see that these  equations  are  immediately  integrable 

4) Solve for lcI2 using (3.9b),  (3.11),  and  (3.12). We find 
that lc12 is  given by the  roots of the following equation: 

(3.4a) 

(3.4b) 

5) The  phase  conjugate  reflectivity is then given by  the 
squared modulus of  (3.1  1). 

When considering  reflectivity  as  a function  of  the various 
input beam  intensities, it is convenient to define the  probe 
ratio q: 

(3.14) 



so that  only  two parameters are required to describe the  input 
beams: the  probe ratio 4 and  the  pump  ratio r = Z2(Z)/Z1 (0). 
In  terms  of these  parameters we  have 

(3.15a) 

(3.15b) 

(3 .15~)  

In Fig. 5 ,  for  example, we plot the reflectivity  of  a  phase  con- 
jugate  mirror as a  function of the coupling  strength lyZl for  the 
case where  the phase  shift  between the grating and  the  inter- 
ference  fringes is 5 '. The  intensities  of  the  two  pumping  beams 
are equal (Y = 1)  and the probe  intensity is 20 percent of the 
total pumping  intensity (4  = 0.2).  The top of the  graph  corre- 
sponds to  the reflectivity that  would result if all the power  of 
beam  2 were transferred to beam 3. This is the  maximum reflec- 
tivity  consistent  with  the  conservation laws (3.1).  The peaks 
in the curve  correspond to  the poles in the reflectivity of a phase 
conjugate  mirror  with  no  pump  depletion (R = ltanh (yZ/2)I2 
for no phase shift  between  the grating  and  interference fringes). 
We have set  the phase shift slightly nonzero to demonstrate 
the  resultant  damping  of  the oscillatory  behavior. The peaks 
bend  toward  the  right,  probably since pump  depletion causes 
high reflectivities to demand  higher  coupling  strengths than are 
required  for the same behavior  in the  undepleted phase conju- 
gate  mirror.  The  bending  of  the  peaks  can even be  sufficient 
for  bistability, as can be seen in the first two peaks  of Fig. 5. 

In Fig. 6, we show  a contour  plot  of phase  conjugate  reflec- 
tivity  for yZ = -3,  as a  function  of  both  pump  and  probe ratios. 
The  first  point to notice is the region  of multistability,  a  direct 
result of  the  nonuniqueness  of  the  solution of (3.13) for  a 
certain range of  parameters.  Secondly, we observe that  the 
reflectivity can remain  finite as the  pump  ratio  tends  to  infinity. 
This  possibility for phase  conjugation  in  the  absence of pumping 
beam  2  has important  consequences  for  the passive  phase 
conjugate  mirrors  described  below. 

The basic physical  difference  between the  two  solution 
surfaces of Fig. 6 lies in the relative phases of the  two  terms 
AIAZ and A;A3 in the  interference  factor (A1&  +AzA3)  
which  appears  in the coupled wave equations (2.9). When the 
phase conjugate  mirror is operating on  the main  surface,  the 
one  which  extends  over  the  entire 4-r  plane, the phase  conju- 
gate  beam is generated so that  the  interference  pattern  formed 
between  itself  and  beam  2 is in phase with  the  interference 
pattern  formed  between  the  forward going beams  1 and 4. On 
the  secondary  surface,  these  two  terms are 71 out of phase with 
each other, so that  both  the grating  strength  and  the  reflectivity 
are  diminished. 

It is often  convenient to be  able to examine  the  intensities 
of the various  beams as a  function  of  location z in  the  crystal. 
For  example,  in  the  next  section  of  this  paper, we will con- 
sider several  devices whose boundary  conditions are given by 
the  ratios  of  intensities  of  pumping beams. These  ratios  appear 
in functions whose zeros  must  be  found to  reach  a  solution. 

Fig. 6. Contour  plot of phase  conjugate  reflectivity  for y l =  -3 as a 
function of the  pump  ratio (Z2(l)/Z1(0)) and the  probe ratio (Z4(l)/ 
[Il (0) + I2 (Z)] ). The transmission  grating  is  operative. 

Occasionally,  since the  ratio of two negative numbers is posi- 
tive,  these functions will indicate  solutions  with negative 
intensities  which  nevertheless  satisfy  the  boundary  conditions. 
It is important  in checking for these  spurious  solutions to  have 
expressions for beam  intensities  as  a  function of z. These  may 
be  derived by using the  amplitude  ratio  functions A12 and& 
in  the conservation laws (3.1). 

(3.16a) 

(3.16b) 

(3 .16~)  

(3.16d) 

me Reflection Grating 
Our  procedure  for  the  solution of the  coupled wave equation 

(2.18) for  the  reflection grating  differs  significantly from  that 
for  the transmission  grating,  mainly  because the spatially 
averaged intensity I ,  is no longer  conserved. We have so far 
only  been  able to demonstrate  complete  solutions  for 71/2 and 
zero  phase  shift cp between  index  and  interference  patterns. 

The  first  step is to observe that  there is a simple solution  for 
the  interference  term g E t A;A3). Using (2.18) for 
negligible absorption we can  immediately  write 

- _  
dz dg - 'yg (3.17) 

so that 

g = g o e Y Z .  (3.18) 

This  result  can be used to simplify the coupled wave equations 
(2.18) to 

(3.19a) 
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(3.19b) - d~ = du 
ye?' 

10 
(3.22) 

where K is a  constant of  integration.  (3.19)  can  then be com- d$ 
pletely  decoupled  by  combining  (3.19b)  with (3.19~)  and =goA; 
(3.19a)  with  (3.19d) to give 

(3.24b) 

d2A1 21g0l2(y t y*) e(Y+Y*)z d A 3  =goA2  (3.24~) 

-- dz 
du 

Igoy(2e(Y+Y*)Z dAZ 
__ =goAT.  (3.24d) 

4)gOl2(y t y*) e(T+Y*)z t K A1 = O  (3.21a) du 

Only if the  phase  shift cp = 71/2 so that  the coupling constant 
21g012(~ + y*) e(T+Y*)z y is real will  we be able to  work  easily  with the  complex  con- 

lgoype(Y+T*)z standard  methods  to  the  solution  with A3(0) = 0, Al(0 ) ,  A2(Z) 

41g012(y + y*) e(^l+Y*)z  t K 

(Y+Y*)z + K ]  ' 2 jugates  of the  equations belonging to (3.24) to proceed by 

A;=0 (3.2  1 b) and A4 (9 known: 

For y + y* = 0, corresponding to zero  spatial  phase shift,  these 
equations  have  constant  coefficients  and can be solved by ele- 
mehtary  techniques.  Otherwise,  there is no clear way to 
integrate  them.  Fortunately,  for  the phase  shift  of  greatest 
interest to  us in  the PR effect, cp = 77/2, there is an alternative 
way to  proceed  to  a  solution. We make  a  change  of  variable 
from z to  u defined  by 

The  phase  conjugate  reflectivity is thus given by 

(3.25a) 

(3.25b) 

(3 .25~)  

(3.25d) 

(3.26) 

To evaluate igolu(Z) we substitute  (3.25)  into  (3.18), using 
the  definition  of g, and  evaluate at z = 0 and 1 to obtain two 
equations  in g o ,  /go I, and [go I u(Z). Solving for go, taking  the 
magnitude,  and  then  eliminating /go I yields 

(3.27) 

where  now  4 = 14(Z)/ [Il (0) t I , ( / ) ]  . Of the  two  solutions, 
only  one  (the minus sign) reduces to the  undepleted  pumps 
solution  (2.15)  as  4 + 0. Fig. 7 is a  contour  plot of this  solu- 
tion  for  the phase conjugate  reflectivity  as  a function of pump 
and  probe  ratios,  for yZ= -3. In contrast to the case of the 
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Fig. 7. Contour  plot of phase  conjugate  reflectivity  for 72 = -3 as  a 
function of the  pump  ratio (Z2(1)/Z1(0)) and  the  probe  ratio (Zd(Z)/ 
[Zl(O) + Z2 (Z)] ). The  reflection  grating  is  operative. 

transmission  grating (Fig. 6), the reflectivity  due to the reflec- 
tion grating goes to zero  in  the limit of the  infinite  pump 
ratio. 

IV. PASSIVE PHASE CONJUGATE MIRRORS AND LASERS 
WITH DYNAMIC INTRACAVITY DISTORTION 

CORRECTION  CAPABILITY 

Certain PR materials  such  as BaTiOa and SBN are endowed 
with  electrooptic  coefficients so large (-1000 pV . m-') that 
values of y of the  order of lo3 m-l  are easily  obtainable  with 
milliwatt  input beams. Not  only  does  this  make i t  possible to 
build phase conjugate  mirrors  with large reflectivities but also, 
it enables the  construction  of phase  conjugate  resonators [59] - 
[65] (PCR's), as well as other useful  resonator devices such as 
passive phase  conjugate  mirrors (PPCM's) and  unidirectional 
ring resonators.  The main  advantage of the PPCM is that  it 
obviates the high quality  externally  provided  pumping beams 
needed  for  conventional  four-wave  mixing  phase  conjugate 
mirrors. In this section we describe the  theory  and  recent  ex- 
perimental  demonstrations  of several PPCM's. Novel inter- 
pretations  of  photorefractive  crystals as error  correcting  opti- 
cal elements  and as double  phase  conjugate  mirrors will also 
be introduced. 

The Linear  and  Semilinear Passive 
Phase Conjugate Mirrors 

The  first passive PR phase conjugate  mirror was the linear 
mirror [42] -[44], a device consisting of an appropriately 
oriented PR crystal  lying  in  a  cavity bounded  by  two  ordinary 
mirrors  [Fig. S(a)] . It  has  been used  in imaging experiments 
and as the  end  mirror  of  an argon  ion laser. It  has also  proved 
to be amenable to analysis  by the  nonlinear PR four-wave 
mixing theory described in  the preceding  paragraphs. The 
theory  of  the device has been  useful  in  developing  an  under- 
standing  of  its  more unusual  features.  For  example, we can 
understand  the  fact  that  under  certain  circumstances, it is 
possible to maintain  operation  when  one  of  the  external  cavity 
mirrors is removed. 

The physical basis for  buildup  of oscillation in  the linear 

(dl 
Fig. 8. (a) Geometry of the  linear passive  phase conjugate  mirror.  The 

probe is beam 4 and  its  phase  conjugate is beam 3 .  The  two  pumping 
beams, 1 and 2, oscillate in the cavity bounded  by  mirrors M I  and M2. 
(b)  Geometry of a  four-wave  mixing  oscillator  which  can  produce 
output beams  which  are not phase  conjugates of the  input beams. 
(See text.) Beams 2 and 4 are  provided  from  an  external  source  and 
beams 1 and 3 build up via four-wave  mixing.  (c)  Geometry of the 
ring  passive  phase conjugate  mirror.  Consistent  with  the  convention 
that  the intensity of beam 3 should  be  zero at  its  entrance face,  the 
probe  is  designated  as beam 2. Pump  beam 4 is  provided by reflec- 
tion- of the  probe  beam  by  mirrors IM1 and  Ma.  The second  pump 
beam 3, and  the  phase  conjugate beam 1 are  self-induced  by  the  non- 
linear  medium.  (d)  Geometry  of  the  two-interaction-region  mirror. 
I t  consists  of  a  ring  mirror  (using  interaction  region C) with  a  double 
phase  conjugate  mirror  (using  interaction region C') in  its  feedback 
loop.  Both  interaction regions  are  inside  a  single  crystal  whose bound- 
ary (large rectangle) gives rise to  feedback  by  total  internal  reflection. 

PPCM is the  phenomenon  of  light  amplification by  two-bean. 
coupling.  This  effect  occurs  when the phase shift  between  the 
index grating and  the  interference  pattern is nonzero.  The 
e-axis of  the  crystal is oriented so that light in beam 1 is am- 
plified  by  two-beam  coupling from  input beam 4 and is fed 
back  by successive reflections  from  mirrors M2 and MI. Os- 
cillation continues to build up until  steady  state is reached for 
beams 1 and 2 which  are now  pumping  the crystal  as  a  phase 
conjugate  mirror  for  input  beam 4. We show  here  how  to 
derive the  reflectivity of the device  (i.e., the  intensity of  beam 
3 divided  by the  intensity  of  beam 4) in the slowly varying 
field, negligible linear  absorption  and single grating  approxi- 
mations, Because the  pumping beams  are  derived from  and 
fed by the signal beam  itself, the  commonly  used  undepleted 
pumps  approximation is inappropriate.  Thus, we  use the 
analysis of Section 111 where we derived the reflectivity  of  a 
PR phase conjugate  mirror  without  assuming  undepleted 
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pumps,  but assuming  knowledge of their  input intensities. 
From  now on except where  otherwise noted,  the  theory  for 
the transmission  grating is used and all  intensities  are  nor- 
malized  by  the  conserved quantity I,,. When discussing the 
reflection  grating,  this  normalization is not used. 

Because the  boundary  conditions  in  the linear PPCM are not 
the  input  intensities Il (0) and I2 (Z), but  rather  the reflectivities 
of mirrors MI and M 2 ,  some further development of the  theory 
is required. We make use of  the  functions A12 and&  to  fit 
these  new boundary  conditions [see (3.4),  (3.10), (3.12)]. 

(4.la) 

(4.1 b) 

(4.2a) 

and 

lcI2 = (A t 1)2/(4Mz)  (4.2b) 

we  see that  (4.1) is really  a function of the single variable A, 
together  with  the  known  quantities y l ,  M I ,  and M 2 ,  Similarly, 
the reflectivity R may  be  rewritten as a  function of  these  same 
variables. We have 

Ml M2 = 112 (0)/42 (0 
T t  [A2 + (A t 1)'/M2] 

= lAT+ [A2 t (A t 1)2/M2]1/2 t (1 t A)T/M2 l 2  
ir (4.3) 

where 

T =  tanh [Az + (A t 1)2/M2]1/2 (4.4) 

Thus,  the reflectivity  of the PPCM may be found  by solving 
(4.3)  for A and  then using the  resultant value(s) in (4.5) for 
R .  We note  that (4.3) may have multiple  roots. 

We show in Fig. 9 a  contour  plot of the reflectivity R as a 
function of MI and M2 for  a particular value of the  coupling 
strength yZ=-3 (i.e.,  with  the n/2 phase  shift  typical of photo- 
refractive  materials). We see that  towards  the  left of this plot 
the reflectivity  can be multivalued, and also that when M2 is 
high the reflectivity  remains  high even when MI is small. We 
shall show that  there is a threshold  coupling  strength  above 
which it is possible to  obtain finite  reflectivities even in the 
absence  of  mirror Ml.  

But  first, we consider the  threshold coupling strength  for 
the  buildup  of oscillation  from  zero  oscillation intensity  in  the 
M 1  -M2 cavity.  This  corresponds to taking I l  (0) = 1, ( I )  = 0, 
that is, A = - 1.  From  (4.3)  the  threshold  may be obtained as 

MlMZ = exp [(Y r*> 11 . (4.6) 

This  fits  in well with  the  heuristic  expansion of oscillation 
buildup given earlier;  the gain in  the  crystal  simply  has to be 
sufficient to overcome  the  losses  due to  the  mirrors Ml and 
M 2 .  Since  the  threshold  depends  only  on  the  real part of the 
coupling  strength, it follows that  a nonlinear  medium  with no 
phase  shift between  the  index grating and  the  interference 
pattern will not  support  operation beginning from  zero oscil- 
lation  strength.  This is because of the  absence  in  these  mate- 
rials  of  unidirectional  two-beam  coupling. 

In  addition, we  see that  no  buildup of  operation  from  zero 
oscillation  strength is possible  in  the  absence  of  mirror Ml 
even when y l  does have a  real part. However, by providing 
a  seed  beam in the M2-crystal  cavity, so that  the  initial  probe 
ratio  is  not  infinite, it is possible in some  cases to  build up 
oscillation in the  absence  of  mirror Ml.  We call  this device 
the semilinear  mirror. It will not  start by  itself,  but  once  ini- 
tiated,  it keeps  going.  Such  behavior  could have been  antici- 
pated  from Fig. 6 which  indicated  that  finite reflectivities were 
available at  infinite  pump  ratio. This  is  exactly the  situation 
confronting us here. It can also be shown that semilinear 
operation is not possible  with the use of  four-wave  mixing via 
the reflection  grating. A semilinear  mirror using the  reflection 
grating  would have the  interference  term g [AIA$ + A t A 3 ]  
equal to zero  either at  the plane z = I or  at  the plane z = 0 
because we must have  either A4(Z) and A Z O  or Al  (0) and 
A3(0) equal  to  zero. Since g = gOeYZ (3.1 8) if g is zero  at 
one  plane, it  must be zero  everywhere, so that  no coupling 
is possible. 

The  theory of the  transmission  grating with Ml = 0 implies 
[see (4.3)] that 

tanh (- [Az t (A t 1)2/M,] l / 2  ) 
= [A2 t (A t 1)2/M2]112 

so that A may  found  from  the  solution of the  quadratic 
equation 

where a is simply  related to  the coupling constant yZ by 

tanh ( +u) = a. 

The  reflectivity  can  therefore be written  in  closed  form as 

Miiz  5 [ ~ ' ( l  + M 2 )  - 11 '1' 
(4. IO) 

so that  the device is at  threshold  with reflectivity R = R, 

when a' equals af 

(4.1 1) 
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Fig,  9.  Contour  plots of the  reflectivity of the passive phase  conjugate  mirror.  Equality of contour levels in  the region 
where  the  function is multivalued is indicated  by  equality of line form (dashes, dots, etc.). The  coupling  strength rl= -3. 
For the sake of clarity  some of the  contours  at  low MI and high Mz have  been  redrawn in  an  inset. 

In  terms of y this  threshold is  given by 

(4.1  2) 

(4.13) 

It is  possible to show  that of the  two possible  values  of above- 
threshold  reflectivity  (4.10)  only the  one associated  with the 
upper sign  is stable.  This mode  of  operation,  without Ml, has 
been observed  in our  laboratory  and, as we describe  below,  has 
been  used  in the PPCM as an  end  mirror  for  an  argon  ion laser. 

Having examined  the  theory  of this  device, we now  turn  to 
results of two  experimental  verifications of the phase conju- 
gating nature  of  the linear PPCM. The  first is a demonstration 
of the phase conjugate  imaging  property of the PPCM. The 
second is an  experiment  showing  intracavity  distortion  correc- 
tion  in  an  argon  ion laser operated  with  one of its  end  mirrors 
replaced  by  linear and semilinear PPCM’s. 

In the  first  experiment [44] (Fig. 10) the  expanded  and 
spatially  filtered output of a  dye laser illuminated  a  transpar- 
ency T [Fig. ll(a)] . The  beam passed through  lens L2 and 
converged  on the linear  mirror,  consisting of a single poled 
crystal  of  barium  titanate  lying  in  the Ml-M2 resonator  cavity. 
The  reflected  beam was picked off by a  beam  splitter BS and 
photographed at  the location  where  a  phase  conjugate image 
would  be  expected.  The  result is shown  in Fig. 1 l(b).  The 
phase  conjugating behavior  of the  linear mirror is quite  evident. 
Intensity  patterns of the oscillation  beams in  the Ml-Mz cavity 
are  shown  in Fig. l l (c)  and (d). These were photographs of 
the  intensities  at  mirrors Ml and M 2 ,  respectively. The  infor- 
mation in the  probe beam  has  been  filtered out, leaving speckle- 
like patterns due to optical  inhomogeneities in the  crystal. 

The  arrangement  for  the CW argon ion laser experiment [43] 
is shown  in Fig. 12. Lasing  was initially  induced at  the high 

6 4 M  2 

Fig 10. The  experimental  arrangement used to demonstrate  phase 
conjugation  in  the  linear  mirror.  The  dye laser  used was a  Spectra 
Physics 380 ring  laser  with rhodamine 6 G  at 579.2 nm is single  longi- 
tudinal  mode. Using a  Cartesian coordinate  system  with  the absicissa 
coincident  with  the beam direction,  the  locations of the  elements 
measured  in  centimeters  were: 20 X beam  expander  L1(-64, 0), 
transparency  T(-55, O), beam  splitter for observing  phase  conjugate 
reflection BS(-38, 0) ,  14 cm focal  length  lens Lz(-20,  0), barium 
titanate  crystal (0, 0), 50 cm  radius  concave  mirror MI, (-28, 1 I) ,  50 
cm  radius  concave  mirror M2(30, -13). The c-axis of the  crystal 
pointed  in the direction of the  vector (0.94, 0.35). This  crystal  mea- 
sured 7 X 4.5 X 4  mm  and was poled into a  single domain so that  the 
c-axis was parallel to the  4 mm  side. 

gain line, 488.0 nm,  between  mirror  M3  and beam  splitter BS 
[Fig. 12(a)].  Light  transmitted  through  the beam splitter 
caused  oscillation  in the PPCM, the  resonator  consisting  of  a 
BaTiO3 crystal  and  mirrors Ml and M 2 .  Reflecting  mirror 
M4 was used to assist in the  buildup of oscillation. With oscil- 
lation established  between Ml and M 2 ,  the beam  splitter  and 
the  retroreflecting  mirror M4 were  removed, as shown  in Fig. 
12(b).  The  starting  procedure  described  above was required 
since the  coherence  of  the fluorescence was insufficient to 
allow the  formation of the  required  refractive  index  grating  in 
the crystal.  Once the grating was established,  the  configuration 
of  Fig. 12(b)  corresponds to an equilibrium  state,  and  the 
grating  in the crystal was continuously  maintained  by  the very 
beams  which it coupled  together. 

The  theory (4.13)  indicates  that  there is a  certain  two-beam 
coupling  strength in the crystal,  above  which  it is  possible to 
maintain  oscillation  between the  crystal  and M z  even in the 
absence of mirror Ml. We were able to demonstrate  such 
oscillation  in our laser. Fig. 12(c)  depicts  the  starting arrange- 
ment. Once  oscillation involving mirror M2 was established, 



CRONIN-GOLOMB et al.: FOUR-WAVE MIXING IN PHOTOREFRACTIVE MEDIA 23 

Fig. 11. Results of the  linear  mirror  phase  conjugation  experiment. (a) The transparency 2'. (b) The  phase  conjugate 
beam  picked off by  beam  splitter BS. (c) The  intensity  pattern of the  oscillation  beam  on  mirror M I .  (d)  The  intensity 
pattern of the  oscillation  beam  on  mirror M2. 

the  beam  splitter and  mirror M4 were  removed and  the laser 
continued  to oscillate,  as  shown  in Fig. 12(dj. 

To demonstrate  the  distortion  correction  capability  of  the 
laser with  the PPCM, we operated  it in the  configuration of 
Fig.  12(d)  with  a severe distortion  placed  between  the  barium 
titanate  crystal  and  the laser gain medium. Fig. 13(bj shows  a 
photograph of the  intensity  pattern of  the  beam  exiting  through 
mirror M 3 .  Operating the laser in  a  conventional  fashion  with 
the  crystal  replaced by a  high-reflectivity  dielectric  mirror and 
with  the  distortion in the beam path gave rise to  the beam 
shown in Fig. 13(aj. The  compensation  effect of the PPCM is 
evident.  The  power output  at 38 A laser tube  current in the 
conventional  resonator  with  the  distortion  inside was about 
1 mW compared  to  about 500 mW with  the PPCM. 

The loss of independence of the  pump beams in the linear 
mirror  results  in  one  difference  from  a regular phase  conjugate 

resonator.  Longitudinal  modes  are  present  in  the  cavity,  cor- 
responding to the  normal  modes observed  in  a  standing wave 
resonator  and have been  observed  with  an  optical  spectrum 
analyzer.  The  correspondence  between the  modes  of an  ordi- 
nary laser and  a  phase  conjugate  resonator  laser  is not  yet well 
understood  and is the subject of ongoing  investigations. 

n e  Double Phase Conjugate Mirror or Intracavity 
Distortion Correction Device 

In  the preceding  discussion, the laser  with  dynamic holo- 
graphic  intracavity  distortion  correction  capability was inter- 
preted  as consisting of an  ordinary  end  mirror,  an  argon  ion 
laser gain medium,  and  a semilinear PPCM. We offer  here two 
alternative interpretations. In the  first,  the  laser  [Fig.  12(d)] 
is viewed as consisting of an  ordinary  end  mirror M I ,  an argon 
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Fig. 12. Passive phase  conjugate  resonator  laser. (a) Starting  configura- 
tion. Mirror M3 was the  standard  high  radius of curvature  output 
mirror of the  Spectra  Physics  argon  ion  laser.  The  distance  from  it 
to  the barium  titanate  crystal C was 220 cm. Mirror M1 is flat  and 
50 percent  reflecting,  and  mirror M2 was concave 5 cm radius of 
curvature  and  highly  reflecting.  The  distances  between  mirror M z  
and  the  crystal,  and  mirror MI and  the  crystal  were  both 4.5 cm. 
None o f  these  parameters was critical to  the  operation of the  laser; 
for example, M2 could  be  replaced  at  the  same  location  by  a 50 cm 
concave  mirror.  The  position of the  intracavity  distortion D is  indi- 
cated  on  the  figure.  (b)  Operating  configuration.  The  crystal  is 
pumped  as  a  phase  conjugate  mirror  by  the  beams  shown  dashed  in 
the M2-Ml cavity. (c)  Starting  configuration for laser without  mirror 
M I .  (d)  Operating  configuration  for laser without  mirror M1. 

ion laser gain medium,  the  crystal as an intrucuvity distortion 
correction device and  another  ordinary  mirror, M3. The 
second  interpretation  comes  from  noting  that  the  aberration 
compensation  observed  in  the  argon  ion laser indicated  that 
each  of  the oscillations-one in  the  Ml-crystal  arm  and  the 
second  in  the  Ma-crystal arm-was composed of two  oppo- 
sitely traveling  waves which were  phase conjugates of each 
other [(Fig. 12(d)].  The  crystal  thus  acted  simultaneously as 
a  phase  conjugate  mirror to the  two beams  which  were  inci- 
dent on it, coupling,  in the process, the  two arms to each 
other. We call a  crystal  operating  in  such  a  manner  a double 
phase conjugate mirror. 

Are the oscillation  beams in  a  crystal  with Zl(0) = 13 ( I )  = 0 
always  phase  conjugates of each  other?  One possibility is 
that oscillation  beams contribute  most to  the four-wave  mix- 
ing process and  experience  maximum gain when the  spatial 
overlap of counterpropagating  beams is maximum,  that is, 
when  they  are phase conjugates of each  other. However,  this 
explanation is inconsistent  with  the behavior of another device 
[Fig.  8(b)]  which we built  [45] in the  hope  that  it  would 
be a  phase  conjugate  mirror.  A signal beam  was incident on a 
beam  splitter  and  the  transmitted  beam was directed  by  mirror 
Ml onto a  barium titanate  crystal as beam 2. The  reflection 
from  the beam  splitter was directed  by  mirror M z  onto  the 
crystal as beam  4. The  theory developed  below  indicates that 
with  sufficient  coupling  strength  and 7r/2 phase  shift  between 
the  interference  fringes  and  refractive  index  fringes,  oscillation 
beams 1 and 3 can  be expected to build  up via gratings  written 
between  beams  1  and 4 and beams 2 and 3. The wave vector 
of  the beam  1-beam 4 grating must be the same as that of the 
beam  2-beam 3 grating so that  both  combine to form  a single 

f-----i 
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Fig. 13. (a)  Photograph of the  output of regular laser (i.e., crystal re- 
placed  by high reflectivity  dielectric  mirror)  containing  an  intracavity 
distortion.  The  distance from the  output mirror M, is 1 m. Thc lascr 
intensity is 1 m W ,  obtained  at 38 A laser tube  current.  (b)  The  out- 
put of the passive phase  conjugate  resonator laser containing  the 
intracavity  distortion.  Thc  distance  from  the  output  mirror M 3  is 
1 m. The laser intensity  hcrc is 3 mW, obtained at  only 21 A laser 
tube  current.  The powcr output  at 38 A is 500 mW. 

grating  coupling all four beams. Thus we require 

kl k4 = k3 - k2 (4.15) 

where ki is the wave vector  of beam j .  In  conventional  appli- 
cations  of  four-wave  mixing kl, k2 ,  and k4 are fixed so that 
(4.1 5) gives a  unique value for  k3,  the wave vector of the phase 
conjugate  beam.  Since  only k2 and k4 are  fixed  in  the device 
of Fig. 8(b), however,  there is  an extra degree  of freedom 
manifested  in  the  expected  and  observed  appearance of beams 
1 and 3 as cones of light  with axis k2 - k4 and surfaces  includ- 
ing both vectors k2 and k4.  This  means that self-induced 
oscillation  by  four-wave  mixing  does not always  require  that 
the  counterpropagating  beams be  phase conjugates of each 
other. 

The  full  linear  and semilinear mirrors involve feedback to 
the  crystal  of  the oscillation beams  while the beam  splitter 
device described  above  does not: in the linear and semilinear 
mirrors,  beam 1 is reflected  into beam 2 and vice  versa by 
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external  mirrors  while  in  the  beam  splitter  device,  the  oscilla- 
tion  beams are lost to  the  outside world. It is feedback  that 
gives phase conjugate  oscillations an advantage in gain over 
other  kinds  of oscillation. We will return to  this  point  when 
we discuss the ring mirror  in  a  later  section. 

When we come to design optical  systems and  circuits using  a 
double phase conjugating PR crystal as a  compensating  element, 
it will be advantageous to  have an  expression  for its transmis- 
sivity.  From  (4.2) and  (4.6) we know  that 

41cI2 = a 2  - A’ 

= a2 [z’(z) +z4(0)] - [Z2(Z) - Z4(0)] ’. (4.16) 

The  transmissivities in  each direction  actually turn  out  to be 
identical 

TS- Z l ( 0  -- - 4 ( 0 )  = l C l 2  

1 4  (0) 1 2  (1) 14 (0) I’ (0 
a2 [ q - 1 / 2  + p ]  2 - [ * - I D  - q1/2] 2 - - 

4 
(4.17) 

where we have used  the  fact that  the  probe  ratio q is simplified 
in this case to Z4(0)/Zz(Z). The device may then also be inter- 
preted as  an aberration  correcting  absorber, whose absorption 
depends on  the  intensity  ratio of the  two  entering beams. The 
lowest  possible  threshold  for  this device obtained  from  the 
definition of a (4.9), is yZt = - 2. 

The  simplest  optical  system  involving the double  phase  con- 
jugate  mirror,  apart  from  the  folded cavity  laser  described 
above  [Fig. 14(a)], is a  ring laser with  intracavity  distortion 
correction  capability  [Fig.  14(b)]. The  optical  feedback  pro- 
vided in the  ring  cavity  should  encourage  phase  conjugate 
operation. If the single-pass  gain is assumed to be G, so that 
Z4(0) = GZl(Z) and Z2(Z) = G13(0), then  after  fitting these 
boundary  conditions, we find  that  the equilibrium value of q 
is  given by 

q = 2g - 1 If: 2[<(< - l)] l/’ (4.18) 

where 

< = (1 - G-’)/(I - a’). (4.19) 

Such  a laser is therefore  bistable:  (4.18)  offers two  solutions 
which  are  reciprocals of each other. This is can be understood 
on  the basis of the  symmetry of  (4.17)  in q and 4 - l .  The gain 
threshold  for  this ring laser as derived from  the  requirement 
< Z 1 is simply Ga2 Z 1 [see (4.18)]. 

The  Ring Passive  Phase  Conjugate  Mirror 
In  this  section we describe  another  kind of PPCM. Unlike 

the  linear PPCM’s it generates  only  one  of its  pumping beams 
via nonlinear  optical  interactions.  The  results of a  theoretical 
analysis of  this device are  shown  as well as  experimental  verifi- 
cation of its  action  as  a  phase  conjugate  mirror [45]. 

In  the basic  implementation  of  this device [Fig.  8(c)]  the 
signal beam 2 passes through  a  photorefractive  medium  and 
returns to  it as pumping  beam 4  around  an  optical  ring  cavity, 
here  represented  by  mirrors MI and M 2 .  It may be advanta- 
geous to use curved  mirrors  or  intracavity  lenses to  minimize 
diffractive  loss  of any spatial  information  on  the signal beam. 

2.0 L = P  

z=o  2 . 1  

(b) 
Fig. 14. PR crystal  acting  as  a  double  phase  conjugate  mirror  in (a) the 

semilinear mirror, (b) a  ring  laser with  dynamic  intracavity  distortion 
correction  capability. 

The  possibility then arises that  the  nonlinear  optical coupling 
in  the crystal  may be such that  both  the  second pumping  beam 
3 and  the phase  conjugate beam 1 build up as  oscillation  beams 
in  the ring cavity. We now  turn  to  a  theoretical  examination 
of the possibility. As in  the case of  the linear  mirror, use of  the 
undepleted  pumps  approximation is inappropriate  and  here, 
too, we use the  depleted  pumps  analysis  of  Section 111. After 
fitting  boundary  conditions of this device, named  the ring 
mirror, we find  that  buildup of  oscillation  in the ring is in  fact 
possible  when the spatial  phase shift  between  the holographic 
refractive  index  grating and  the light  interference  pattern is 
nonzero so that advantage is taken  of  unidirectional  beam 
coupling  effects  typical  of  real  time  holography  in PR crystals. 

In previous  calculations,  beam 3 has  been the phase  conju- 
gate  beam.  Here,  however, we designate  beam  1 as the phase 
conjugate,  because we wish to  retain  the  convention  that Z3(Z) = 
0, so that previous  results  may be directly  adapted  to  the 
solution  required  here.  The  phase  conjugate  reflectivity is 
then going to  be R = ZI2(Z). Let  the product  of  the  intensity 
reflectivities  of the  feedback mirrors Ml and M2 be M so that 
the  appropriate  boundary  conditions  for  the  ring  mirror  [Fig. 
8(c)]  are 

14 (0)/12 (0) = M (4.20a) 

11 (0)/13 (0) = M. (4.20b) 

Equation  (3.16)  supplies  the  required  intensities  in  terms  of 
Zl2(O), 134(0)r d l ,  and d 2 .  Furthermore,  from  our analysis of 
the linear  mirror, we have available expressions  for Z12(0) and 
134(0) in  terms  of A and I12(2); these  are  (4.3) and (4.9, 
respectively.  Thus, if we know dl , d,, and A, we will be able 
to solve (4.20) for  the reflectivity Zlz(Z). Fortunately, these 
constants  are  immediately available to us: 

(4.21) 

where we have  made use of the  boundary  conditions (4.20). 
We observe that dl and d2 may be found  from  the  relations 
d2 - dl = A and dl + d2 = 1 so that 

dl = M/(M + 1) (4.22a) 
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and 

d2 = 1 /(M + 1). (4.22b) 

The reflectivity  of the ring  mirror  is  shown  in Fig. 15 as a 
function of yl. It has been taken to  be real so that  it  repre- 
sents  the rr/2 phase  shift  characteristic  of  holographic  record- 
ing in photorefractive  crystals  by  diffusion  of charge carriers. 
Curves for several  values  of the  feedback  parameter M are 
included. We see that  at  threshold,  the reflectivity is zero: 
this  threshold  may  be  found  by solving the  boundary  condi- 
tions  in  the  limit of zero  reflectivity, Z12(1) = 0. It  is given by 

( M t l j   M t 1  
(M - 1) In (7) ' 

yz, = -- (4.23 j 

Concerning  the  faithfulness of phase  conjugation  in  the  ring 
mirror, it might be expected  that since the  self-induced  pump- 
ing beams  are not plane waves a  certain  amount  of  distortion 
would be introduced  into  the phase  conjugate  beam.  In  the 
case of the linear  mirror,  physical  constraints  imposed by the 
cavity  mirrors  may  lead to filtering  of  the signal information 
from  the  pumping beams, but  one of the  pumps in the ring 
mirror  is  simply  light  transmitted  through  the  crystal  fed  back 
to it by a passive optical  system  containing, at least  in  the 
experiment  described  below, very little  spatial  filtering.  In 
the preceding discussion  of the linear mirror, we proposed that 
feedback gives phase  conjugate  oscillations an advantage  in 
gain  over other  kinds  of oscillation. In  the ring  mirror we have 
A4 = M 1 / 2 K A 2  and A; = k-'12KAT with K the lossless linear 
operator  for  propagation of beam  2 around  the ring to beam 4. 
The  relevant index grating is represented  in  the  coupled wave 
equations by  a  term  proportional to ATA4 t A2A$ which 
equals M112AFKA2 t M-l12A2KAT  at  the crystal face ( z  = 0). 
Unless K is the  identity  or  otherwise  pathological,  then  both 
terms in  the  sum will add in  phase at  this  crystal face if and 
only  if Al  is proportional to A;. 

The  apparatus of Fig. 16 was used to demonstrate  the phase 
conjugating  nature of the ring  mirror.  The  expanded  and 
spatially  filtered output of an  argon  ion laser in single longi- 
tude  mode  at 488.0 nm passed through  lens L 2  andilluminated 
an  Air Force  Resolution  Chart.  The  beam  then  converged  on 
the passive conjugate  mirror,  consisting of a single poled  crys- 
tal  of  barium  titanate in  the Ml-M,  ring cavity. LensL3 was 
provided to decrease diffractive loss in  the ring. The  reflected 
beam  was picked  off by a beam splitter BS and  photographed 
at  the location  where  a  phase  conjugate image would be ex- 
pected. The  result is shown  in Fig. 17(a). The phase conju- 
gating  behavior of the passive phase  conjugate  mirror is evident 
although  some  lack of uniformity  in  the  intensity of  image  is 
apparent.  This  can  be  seen  more clearly in Fig. 17(b),  which is 
the phase conjugate  reflection of the  uniformly  expanded laser 
beam  vignetted  by the  aperture of lens L 2 .  We believe that  the 
dark  areas in  the image at 6  and 12 o'clock  are  due to losses 
via the  fanning  effect  [66] in which  a single beam  passing 
through a  photorefractive  crystal  with  a  sufficiently large 
coupling  loses  intensity via holographic  two-beam  coupling 
to a  broad  fan. Fig. 17(c)  and (d) shows the  effect  of  fanning 
on  the spatial  distribution of intensity  in  such  a signal beam. 
Mirrors MI and M2 were removed from  the ring  mirror,  and 
holographic  gratings  in  the  crystal were allowed to decay  by 
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Fig. 15. Reflectivity  of  the  ring  passive  phase  conjugate  mirror as a 
function of coupling  strength  for several  values of the  product M of 
intensity  reflectivities of the  feedback  mirrors M I  and M,. 

Fig. 16. The  expcrimental  arrangement used to  demonstrate  phase 
conjugation  in the ring  passive  phase  conjugate  mirror. An argon  ion 
laser  was  used at  488 nm in single longitude  mode. Using a  Cartesian 
coordinate system  with the abscissa coincident  with  the beam  direc- 
tion,  the  locations of the  elements  measured in cm were: 30 X objec- 
tive Ll(61,  0), transparency T(30,  O), beam  splitter  for  observing 
phase  conjugate  reflection BS(5, 0)  14 cm  focal  length 3 cm  diam- 
eter  lens  L2(41, 0) ,  barium  titanate  crystal (0, O ) ,  plane  mirror 

(-9, O ) ,  plane  mirror M2(-28,  -20), 15  cm  focal  length 3 cm 
diameter  lens L3(-18, -10). The c-axis of the crystal  pointed  in  the 
direction of the  vector (0.68, 0.73). The  crystal  measured  5.1 X 
4.8 X 5.1 mm  and was  poled into a  single domain so that  thc c-axis 
was parallel to  the 4.8 mm side. 

dark  current leakage.  The  uniform signal beam was then 
allowed to pass through  the  crystal  and a  photograph  [Fig. 
17(c)] of this  beam after passage through  the  crystal was 
immediately taken,  before  fanning  could  build up,  the time 
scale of hologram  writing  being  of the  order of several seconds. 
Fig. 17(d)  shows the same  beam  with  intensity loss by fanning. 
A dark  area  developed, just as dark  areas  developed in  the 
phase conjugate beam of Fig. 17(b). 

The Two Interaction Region Passive 
Phase Conjugate Mirror 

Recently, Feinberg  has reported a passive  phase conjugate 
mirror  comprising  a single crystal  [Fig.  8(dj]  which makes use 
of totally  internally  reflecting  surfaces  of  the  crystal as feed- 
back  mirrors [46],  [67j. This device is identified as the two 
interaction region (2ZR) mirror since it uses two  interaction 
regions  linked  inside the single crystal. 

By interpreting  this device as a  ring  mirror  containing  a 
double  phase  conjugate  mirror  in  its  feedback  loop, we  can 
present  a simple theoretical analysis making  direct use  of our 
previous  calculations. We saw above that  the transmissivity 
of the  double phase conjugate  mirror is the same for  both of 
the beams  incident  on  it.  Thus,  the 21R mirror can  be thought 
of  as a ring mirror whose feedback M is multiplied  by  the  ef- 
fective  transmission due to  the double  phase  conjugate  mirror 
(4.17). We can immediately  write  down  appropriately  modi- 
fied  versions of the ring  mirror  boundary  conditions. 

z ~ ( O ) / I ~ ( O ) =  T(A', a ' )M (4.24a) 

Il (0)/13 (0) = T(A', a')  M (4.2413) 
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Fig. 17. Experimental  results  for  the ring  mirror  showing:  (a) The phase  conjugate  image  of  an  Air  Force Resolutionchart. 
(b) The phase  conjugate  image  of  uniform  expanded  beam  vignetted  by  lens L z .  (c)  The  effect  of  fanning on the signal 
beam  with  apparatus as in  Fig. 3, without  transparency T,  and  mirrors M I  and M z .  Beam transmitted  through  crystal 
before  buildup of  fanning.  (d) Beam transmitted  through  crystal  after  buildup  of  fanning. 

where  primed  quantities  refer to the double  phase  conjugate 
mirror,  and  the A used  in the  left-hand side of these equations 
is  given by 

A =  
I - T(A', a ' )M 
1 + T(A', a')" 

(4.25) 

These equations  (4.24),  (4.25)  must  then be  solved numerically 
for A' and  reflectivity R = Z,, (0. 
Threshold  Versus Reflectivity Venus 
Ease of Alignment 

Both  the linear and ring  mirrors have self-starting  thresholds 
t(4.6)  and  (4.23)]:  when they are  exceeded, oscillation  beams 
of infinitesimal  intensity  experience gain. This  self-starting 
ability is not possessed by  the semilinear  or 21R mirror  since 
oscillation  beams  of  these devices experience gain only when 
their  intensities  are  above  a  certain  nonzero  threshold.  Start- 
ing these devices thus  requires seeding  of  their  oscillation 
beams,  The 21R mirror  has  in  fact  been  shown to be able to 

start  without  the aid of externally  provided  seeding, but  it is 
believed to be dependent on effective  seeding by  the  fanning 
effect  which is due to two-beam  coupling  amplification of 
scattered  light  and  not to the four-wave  mixingprocess  referred 
to here. 

Equation  (4.23) shows that  the  threshold coupling  strength 
in the ring mirror  for  unity  feedback, M = 1, is y l ,  = - 1. The 
self-starting  threshold for  the linear mirror is ylt  = 3 In A4 [see 
(4.6)]  where M is the  product  of  the  intensity reflectivities of 
the linear  cavity  mirrors, so that  with ideal  feedback ( M =  1) 
the  threshold  coupling  strength is zero.  The  threshold of the 
semilinear  mirror  with unity reflectivity for  the  external  mirror 
is found  from (4.13) to be y l ,  = -2.49, while the  threshold  for 
the 21R mirror  with  ideal  feedback is y l ,  = -4.68. 

The  linear  mirror thus  has  the  simultaneous advantages of 
having very low  threshold  and of self-starting by four-wave 
mixing. It  does, however,  require  careful  alignment. Of the 
remaining passive  phase conjugate  mirrors, all of them easily 
aligned, the ring mirror  seems to be most  attractive  in  that  it 
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Fig. 18. Graphs  of  phase  conjugate  reflectivities  of  the  various  passive 
phase  conjugate  mirrors  with  ideal  feedback.  (a) The linear  mirror 
with Ml = M 2  = 1, (solid).  (b)  The semilinear mirror  with M2 = 1, 
(dots). (c) The ring  mirror  with M = 1 (long  dashes). (d)  The  two 
interaction  region  mirror  with M = 1 (dashes). 

has the lowest  threshold  and is self-starting. A major  advan- 
tage  of the 21R mirror  has  been that  it is completely self- 
contained in  a single crystal, using total  internal  reflection at 
the  crystal  faces  for  feedback.  The  ring  mirror  can also be 
implemented  in  this  same  manner using crystals whose surfaces 
are cut  at  appropriate angles. 

Fig. 18 gives a  direct  comparison of the reflectivities of  each 
of  the PPCM’s for ideal  feedback in each case. The  zero  thresh- 
old of the linear  mirror is shown  and we  see that  the semilinear 
mirror  reflectivity is always  lower than  that of the  full linear 
mirror, as might be expected, since with  one  mirror  removed, 
there is always going to be some  extra loss. The ring  mirror 
reflectivity,  after  talung  off  from  its  threshold,  soon  exceeds 
all  of them. 

V. CONCLUSION 
The  two vital  elements  in  this  work have  been the  solution 

of the  coupled wave equations  with  pump  depletion  and  the 
availability of PR crystals  with large coupling  strengths.  The 
value  of such  concurrent  theoretical  and  experimental  work is 
undeniable: it has  led to  many  new useful devices such as 
passive and  double phase conjugate  mirrors  and  their  demon- 
stration  in  aberration  correction  in lasers and image  processing. 
In  the  future we can  expect similarly important  developments, 
and as research  proceeds into optimizing the photorefractive 
effect,  the  applications of these devices to problems  in image 
processing and  aberration  correction  are  bound to multiply. 

ACKNOWLEDGMENT 
M. Cronin-Golomb  would  like to acknowledge the  support 

of  the University of Sydney  and B. Fischer  would  like to 
acknowledge the  support  of  the Weizmann post-doctoral 
fellowship.  The authors  would like to acknowledge  helpful 
discussions with S.-K. Kwong. 

REFERENCES 
[ l ]  A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ball- 

man, J. J. Levinstein,  and  K.  Nassau,  “Optically-induced  refrac- 
tive index  inhomogeneities  in  LiNbO3  and  LiTa03,”  Appl. Phys. 
Lett., vol. 9 ,pp .  72-74, 1966. 

[ 2 1  F. S. Chen, “A laser-induced inhomogeneity  of  refractive indices 
in KTN,”J. Appl.  Phys.,  vol.  38,  pp.  3418-3420,  1967. 

[3]  -, “Optically  induced  change of  refractive  indices  in LiNb03 
and  LiTaOa,” J. Appl.  Phys., vol. 40, pp. 3389-3396,  1969. 

[4]  F. S. Chen,  J. T. LaMacchia, and D. B. Fraser,  “Holographic 
storage  in  lithium  niobate,” Appl.  Phys. Lett., vol. 13,  pp. 223- 
225,  1968. 

[5] R. L. Townsend  and J. T. LaMacchia,  “Optically induced  refrac- 
tive index changes in BaTiO3,” J. Appl.  Phys.,  vol. 41,  pp.  51 88- 
5192,1970. 

[6]  J. B. Thaxter  and M. Kestigian,  “Unique properties of SBN and 
their  use  in  a  layered  optical  memory,” Appl .  Opt., vol. 13, pp. 

[7]  A. M. Glass, D. von  der  Linde, and  T. J. Negran,  “High-voltage 
bulk  photovoltaic  effect  and  the  photorefractive  process in 
LiNb03,”  Appl.  Phys.  Lett., vol. 25,  pp. 233-235, 1974. 

[8]  J. P.  Huignard, J. P. Herriau,  and F. Micheron,  ‘‘Optical  storage 
in LiNb03 : Fe  with selective  erasure  capability,” Rev. Phys. 
Appl.,vol. 10, pp.  417-423,  1975. 

[9]  D. von  der  Linde and A. M. Glass,  “Photorefractive  effects  for 
reversible  holographic  storage  of  information,” Appl.  Phys.,  vol. 

[ 101 J. P. Huignard and F. Micheron, “High sensitivity  read-write 
volume  holographic  storage  in  Bi12Si0z0  and Bi12GeOzo crys- 
tals,”Appl. Phys. Lett., vol. 29,  pp.  591-593,  1976. 

[ 111 K. Megumi, H. Kozuka, M. Kobayashi,  and Y. Furuhita, “High- 
sensitive  holographic  storage  in  Ce-doped  SBN,”  Appl.  Phys. 
Lett., vol. 30,  pp.  631-633,  1977. 

[ 121  R.  Orlowski, E. Kratzig,  and H. Kurz,  “Photorefractive  effects  in 

913-924,  1974. 

8, pp.  85-100,  1975. 

LiNb03  :Fe  under  external  electric fields,”  Opt. Commun., vol. 

131 J. P. Huignard  and J. P. Herriau,  “Real-time  double  exposure 
interferometry  with Bi12Si020 crystals  in  transverse  electrooptic 
configuration,”  Appl.  Opt., vol. 16,  pp.  1807-1809,  1977. 

141 M. Peltier and F. Micheron,  “Volume  hologram  recording  and 
charge  transfer  process  in BiI2Si0m  and  Bil2GeO~),” J.  Appl. 

151 J. P. Huignard, J. P. Herriau,  and T. Valentin,  “Time  average 
holographic  interferometry  with  photoconductive  clectrooptic 
Bil2Si02o  crystals,”  Appl.  Opt.,  vol. 16, pp.  2796-2798,  1977. 

161 H. Kurz,  “Lithium  niobates as a  material  for  holographic  informa- 

20,  pp.  171-174,1977. 

Phys., V O ~ .  48, pp.  3683-3690,  1977. 

I .  
tion  storage,”  Philips Tech Rev., vol. 37,  pp. 109-120, 1977. 

[ 171 J. P. Herriau, J. P. Huignard,  and  P.  Aubourg,  “Some  polarization 
properties of volume  holograms in Bi12SiOm cyrstals  and  applica- 
tions,”Appl. O p t ,  vol. 17,  pp.  1851-1853,  1978. 

[ 181 M. P. Petrov, S. I. Stepanov,  and A.  A. Kamshilin,  “Holographic 
storage  of  information  and  peculiarities of  light  diffraction in 
birefringent  electrooptic  crystals,” Opt.  Laser  Tech.,  pp. 149- 
151,  June  1979. 

[19] R.  Orlowski, L. A. Boatner,  and E. Kratzig,  “Photorefractive  ef- 
fects  in  the  cubic  phase  of  potassium  tantalate-niobate,”  Opt. 
Commun., vol. 35,  pp.  45-48,  1980. 

[20] J .  0. White and A. Yariv,  “Real  time  image  processing via four- 
wave mixing  in  a  photorefractive  medium,”  Appl. Phys. Lett., 

[21] J. P. Huignard and A. Marrakchi,  “Coherent signal beam  amplifi- 
cation  in two-wave  mixing experiments  with  photorefractive 
Bi12Si020  crystals,” Opt. Commun., vol. 38,  pp. 249-254, 1981. 

[ 221 J. J. Amodei,  “Analysis  of transport processes  during  holographic 
recording in insulators,” RCA Rev., vol. 32,  pp.  185-198,  1971. 

[ 231 Y.  Ninomaya,  “Recording  characteristics of  volume  holograms,” 
J. Opt. SOC. Amer.,vol.  63,  pp. 1124-1130,  1973. 

[24] L.  Young, W.K.Y. Wong, M.L.W. Thewalt,  and W. D. Cornish, 
“Theory  of  formation  of  phase  holograms  in  lithium  niobate,” 
Appl.  Phys. Lett., vol. 24,  pp.  264-265,  1974. 

[25] D. M. Kim, R. R. Shah, T. A. Rabson,  and F. K. Tittel,  “Non- 
linear  dynamic  theory  for  photorefractive  phase  hologram  forma- 
tion,”Appl.  Phys.  Lett., vol. 28,  pp.  338-340,  1975. 

[26] D. W. Vahey, “A nonlinear  coupled-wave theory of  holographic 
storage  in  ferroelectric  materials,” J. Appl. Phys., vol. 46, pp. 

1271 S. F. Su and  T. K. Gaylord,  “Unified  approach  to  the  formation 
of  phase  holograms in ferroelectric  crystals,” J. Appl.  Phys., vol. 

[28] R. Magnusson and T.  K. Gaylord,  “Use  of  dynamic  theory  to 
describe  experimental  results  for  volume  holography,” J. Appl. 

[29] M. G. Moraham and L. Young,  “Hologram  writing  by the  photo- 
refractive effect,”J. Appl.  Phys., vol. 48,  pp.  3230-3236,  1977. 

[30] B. I. Sturman,  “Interaction of two  light waves in a  crystal  caused 
by  photoelectron  diffusion  and  drift,” Sov. Phys.-Tech.  Phys., 

V O ~ .  37,  pp. 5-7, 1980. 

3510-3515,1975. 

46,  pp.  5208-5213,1975. 

Phys.,vol.  47, pp.  190-199,  1976. 

V O ~ .  23,  pp.  589-595,  1978. 



CRONIN-GOLOMB et al.: FOUR-WAVE MIXING IN  PHOTOREFRACTIVE  MEDIA 29  

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin,  and 
V. L. Vinetskii,  “Holographic  storage  in  electrooptic CrySkAlS,” 
Ferroelectrics, vol. 22,  pp.  949-960,  1919. 
J .  Feinberg, D. Heiman, A. R. Tanguay,  Jr.,  and  R. W. Hellwarth, 
“Photorefractive  effects  and  light  induced charge  migration in 
barium  titanate,”J. Appl .  Pkys., vol. 51, pp. 1297-1305,  1980. 
J. Feinberg,  “Real-time  edge  enhancement using the  photore- 
fractive  effect,” Opt. Lett., vol. 5,  pp.  330-332,  1980. 
S. I, Stepanov, V. V. Kulikov, and M. P. Petrov,  “Running  holo- 
grams in  photorefractive Bi12SiOzo crystals,” Opt. Commun., vol. 

For reviews  see A. Yariv,  “Phase  conjugate optics  and  real-time 
holography,” lEEE J. Quantum  Electron., vol.  QE-14,  pp.  650- 
660,  1978, also  Special  issue  on  Optical  Phase  Conjugation, Opt. 
Electron., vol. 21,  no.  2, also Optical Phase Conjugation, R. A. 
Fisher,  Ed. New York:  Academic,  1983. 
A. Yariv, “Four wave nonlinear  optical  mixing  as  real  time  holo- 
graphy,” Opt.  Commun., vol. 25,  pp.  23-25,  1978. 
J. P. Huignard, J. P. Herriau, P. Aubourg,  and E. Spitz, “Phase 
conjugate  wavenont  generation via real  time  holography in Bi12 
Si020  crystals,” O p t  Lett., vol. 4,  pp. 21-23, 1979. 
J. P. Huignard, J. P. Herriau,  and G. Rivet,  “Phase  conjugate and 
spatial  frequency  dependence of wavefront  reflectivity in  Bin 
Si020  crystals,” Opt.  Lett., vol. 5, pp.  102-104,  1980. 
N.  V. Kukhtarev,  “Wavefront  reversal of optical  beams  in  aniso- 
tropic  media,” Sov. J. Quantum  Electron., vol. 11,  pp. 878-883, 
1981. 
P. N. Guntcr,  “Electric field dependcncc  of  phase-conjugate wave- 
front  reflectivity in reduced  KNb03  and  Bi12Gc02~,” Opt.  Lett., 

J. Feinberg,  “Phase  conjugating  mirror  with  continuous  wave 
gain,” Opt. Lett., vol. 5,  pp.  519-521,  1980. 
J. 0. Whitc, M. Cronin-Golomb, B. Fischer,  and A. Yariv,  “Co- 
herent  oscillation by  self-induced  gratings  in  the  photorefractive 
crystal BaTiO3,”Appl. Pkys.  Lett., vol. 40,  pp.  450-452,  1982. 
M. Cronin-Golonib, B. Fischer, J .  Nilscn, J. 0. White, and A. 
Yariv,  “Laser  with  dynamic  holographic  intracavity distortion 
correction  capability,” Appl.  Pkys.  Lett., vol. 41, pp.  219-220, 
1982. 
M. Cronin-Golomb, B. Fischer, J .  0. White, and A.  Yariv, “Pas- 
sive (self-pumped)  phase  conjugate  mirror:  Theorctical  and 
experimental  investigation,” Appl.  Pkys.  Lett., ~01.   41,  PP. 689- 
691,1982. 

oscillation  in  an  optical  ring  cavity,” Appl. Pk-Vs. Lett., V O ~ .  42, 

J. Feinberg,  “Self-pumped,  continuous-wave  phase  conjugator 
using internal  reflection,” Opt. Lett.,  vol. 7,  pp.  486-488,  1982. 
S. G.  Odulov  and M. S. Soskin,  “Laser  with  degenerate  pumping 
on  LiNbO2.” JETP  Lett.. vol.  37. DP. 289-293.  1983. 

44,  pp.  19-23,  1982. 

v01. 7, pp. 10-12,  1982. 

- , “A passive  phase  conjugate  mirror  based  on  self-induccd 

pp.  919-921,1983. 

[48] B. Fische;,’ M. Cronin-dolomb,’ j: 0. White; A. Yariv, and R. 
Neurgaonkar,  “Amplifying  continuous wave phase  conjugate 
mirror  with  strontium  barium  niobate,” Appl. Phys. Lett., vol. 

P. Gunter,  “Holography,  coherent  light  amplification  and  optical 
phase  conjugation  with  photorefractive  materials,” Pkys. Rep., 

A. Yariv, Quantum Electronics. New York: Wiley, 1975. 
B. Fischer, M. Cronin-Golomb, J. 0. White, and A. Yariv,  “Am- 
plified reflection,  transmission  and  oscillation  in  real-time holog- 
raphy,” Opt.  Lett.,vol. 6 ,  pp. 519-521,  1981. 
A. Yariv and D. M. Pepper,  “Amplified  reflection,  phase  conjuga- 
tion,  and  oscillation  in  degenerate  four wave  mixing,” Opt.  Lett., 

40,  pp.  863-865,  1982. 

VOI. 93, pp. 199-299,  1982. 

solution  of  a  nonlinear  model  of four-wave  mixing and  phase 
conjugation,” Opt. Lett., vol. 7,  pp.  313-315,  1982. 
J. Au  Yeung, D. Fekete, D. Pepper,  and A. Yariv, “A theoretical 
and  experimental  investigation of the  modes of optical  resonators 
with  phase  conjugate  mirrors,” IEEE J. Quantum  Electron., vol. 

I. M. Bel’yugdin, M. G. Galushkin,  and E. M. Zemskov,  “Prop- 
erties  of  resonators  with wavefront-reversing  mirrors,’’ Sov. J. 
Quantum  Electron., vol. 9,  pp. 20-23, 1979. 
I. M. Bel’yugdin and E. M. Zemskov,  “Theory  of  resonators  with 
wavefront  reversing mirrors,” Sov. J. Quantum  Electron., vol. 9, 

P.  A. Belanger,  A.  Hardy, and A. E. Siegman, “Resonant  modes 
of optical  cavities  with phase-conjugate  mirrors,” Appl .  Opt., 

J. F.  Lam and W. P. Brown,  “Optical  resonators  with phase-con- 
jugate  mirrors,” Opt. Lett., vol. 5, pp.  61-63,  1980. 
M. G. Reznikov  and A. I. Khizhnyak,  “Properties  of  a  resonator 
with a wavefront-reversing mirror,” Sov. J. Quantum  Electron., 

R.  C.  Lind and D. G. Steel,  “Demonstration  of  the  longitude 
modes  and  aberration-correction  properties of a  continuous wave 
dye laser  with  a  phase conjugate mirror,’’ Opt. Lett., vol. 6, pp. 

V. V. Voronov, I. R. Dorosh,  Yu. S. Kus’minov, and N. V.  Tka- 
chenko,  “Photoinduced  light  scattering  in  cerium-doped  barium 
strontium  niobates  crystals,” Sov. J. Quantum Electvon., vol. 10, 

K.  R.  MacDonald and J .  Feinberg,  “Theory  of  self-pumped  phase 
conjugator  with  two  coupled  interaction  regions,” J.  Opt. Soc. 
Amer., vol. 73,pp.  548-553,  1983. 

QE-15,  pp. 1180-1188,  1979. 

pp. 1198-1199,1979. 

V O ~ .  19, pp.  602-609, 1980. 

VO~.  10,  pp.  633-634,  1980. 

554-556,1981. 

pp.  1346-1349,1980. 

Mark Cronin-Colomb received the B.Sc. degree 
in  physics from  the University  of Sydney, 
Sydney, Australia,  in 1979,  and  the Ph.D. 
degree in  physics  from  the  California  Institute 
of Technology,  Pasadena,  in  1983. 

As an  undergraduate,  he  investigated  the use 
of diffraction  gratings  in  enhancing  the  charac- 
teristics  of  solar  selective  film  absorbers.  Since 
1979  he  has been at  the  California  Institute  of 
Technology,  working  first on  a neutrino  scatter- 
ing experiment  at  the  Fermi  National Accelera- 

tor  Laboratory,  and  then  carrying out research in  nonlinear  optics  and 
phase  conjugation in  photorefractive  materials. He is currently  a Re- 
search  Fellow  in  Applied  Physics. 

Baruch  Fischer  received  the Ph.D. degree in 
physics  from Bar Ilan  University,  Israel,  in  1980. 

From  1981  to  1982  he was  a  Weizmann  Post- 
doctoral Research  Fellow at  the California 
Institute  of  Technology  and is now  a  Senior 
Lecturer  at  the  Department  of  Electrical 
Engineering, Technion, Haifa,  Israel.  His  cur- 
rent  research  interests  are  electrooptics  and 
quantum  electronics. 

Jeffrey 0. White  was  born  in New Jersey. He 
received the Sc.B. degree in  physics  with  honors 
from  Brown University,  Providence,  RI, in  1977. 
He received the Ph.D.  degree in  applied  physics 
from  the  California  Institute  of  Technology, 
Pasadena. 

His  research interests  include  phase  conjuga- 
tion,  the  photorefractive  effect,  optical  informa- 
tion  transmission  and  processing,  chaotic 
behavior in nonlinear  optics,  compensation of 
distortions using  nonlinear  optics,  self-pumped 



30 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-20, NO. 1, JANUARY 1984 

phase  conjugate  mirrors  (patent  pending),  and solving coupled  nonlinear 
partial  differential  equations. He is coauthor of a chapter  in  the  text 
Optical Phase Conjugation. 

in the  invention  of  the  technique  of  mode-locked  ultrashort-pulse lasers 
and FM lasers,  in the  introduction of GaAs and  CdTe as infrared  elec- 
trooptic  and  window  materials, in proposing  and  demonstrating semi- 
conductor-based  integrated  optics  technology, and in  pioneering the 
field of phase  conjugate  optics. His present  research efforts  are  in  the 
areas of nonlinear  optics,  recombination  mechanisms  in  semiconductors, 
and  semiconductor lasers  and integrated  optics, especially the  problem 
of monolithic  integration of transistors,  injection lasers, and  detectors 
for high  frequency  applications.  He  has  authored  or  coauthored  some 
300 papers  in  professional  journals, as well as a  number of basic texts 
in quantum  electronics,  optics,  and  quantum mechanics.  He is also an 
Associate Editor  of Optics  Communications and  the Journal of Applied 
physics, and was previously  Associate  Editor of the  IEEE JOURNAL OF 
QUANTUM  ELECTROYICS. He is a consultant to the  Hughes  Aircraft 

1 

Research  Laboratories  and is a founder  and  Chairman-of-the-Board 
of ORTEL, Inc. 

Dr. Yariv is a member of the  American Physical Society, Phi  Beta 
Kappa,  and  the  National Academy of Engineering,  and  a  Fellow of  the 
Optical  Society  of  America. He is the  recipient  of  the  1980  Quantum 
Electronics  Award  of  the  IEEE. 

Nonlinear Optical Interfaces:  Switching  Behavior 

PETER W. SMITH, FELLOW, IEEE, AND W. J. TOMLINSON 

Abstract-We  report  the  results  of  a  study of the switching  behavior 
of the  interface  between  an  ordinary  dielectric  and  a  nonlinear  dielec- 
tric material  with  an  intensitydependent  index of refraction.  The  non- 
linear  dielectric  used  for  these  experiments  consisted of a  liquid sus- 
pension of dielectric  particles.  Because this  medium  has  a  very large 
effective  nonlinearity,  it  was  possible to  perform  these  experiments 
with  the CW output of  an  argon  ion laser. Our  experimental  results  are 
in  excellent  agreement  with the  predictions of numerical  calculations 
based on a  two-dimensional  Gaussian  input beam. We also  report  the 
observation of an  unstable  reflectivity  state  with  a  lifetime - lo3 times 
the response  time of the nonlinear  medium. 

I. INTRODUCTION 

I N this  paper we report  on a study  of  the switchmg  behavior 
of a  nonlinear  interface [ l]  - [4] (an  interface  between  an 

ordinary  dielectric  and  a  dielectric  material  with an intensity- 
dependent  index  of  refraction).  For  the  experiments, we have 
made use of an artificial  Kerr medium, consisting of a  liquid 
suspension of dielectric  particles [SI - [7] . This  medium  has  a 
very large effective  nonlinear  refractive index,  which  makes  it 
possible to  study  the behavior of nonlinear  interfaces  with 
moderate-intensity CW laser beams.  The experimental  results 
are in qualitative and in some cases quantitative  agreement 
with  the results of numerical  calculations for two-dimensional 
Gaussian  beams [4] , and  they  exhibit  features  that  are  not  pre- 
dicted by simple  plane-wave theories. No evidence of a  bistable 
reflectivity was obtained. We did  observe,  however,  an  unstable 
state  with a  lifetime as long as lo3 times  the response time  of 
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the nonlinear  medium.  This long-lived state  may have serious 
implications  for  some  proposed  applications  of  nonlinear  inter- 
faces,  and it merits  further  study. 

Nonlinear  interfaces  are  of  interest because they are po- 
tentially  useful as very  fast  (sub-ps)  optical  switches and logic 
elements.  The  initial  theoretical study  of  nonlinear  interfaces, 
assuming an  incident  plane wave, predicted that  for  the  con- 
figuration we  are studying,  the  reflectivity  of  the  interface is 
unity  at low  intensities,  and  for  intensities  above  a  threshold 
value the reflectivity will switch to a  lower value [ l ]  . The 
plane-wave theory also predicted that  for a  finite range of  in- 
tensities  below the  threshold value there is a  second  stable 
state,  with a  reflectivity of less than  unity, so that  the reflec- 
tivity is bistable.  The  first  experiments on such  an  interface 
gave results that  appeared to be consistent  with the predictions 
of  the plane-wave theory [2], [ 3 ] .  However, the  apparatus 
used for these  experiments  had several features  which  compli- 
cated  the  interpretation  of  the results.  The input light  beam 
had  a Gaussian profile, so it was not possible to make  direct 
comparisons  between  the  predictions  of the plane-wave theory 
and  the  experimental  results.  The  input pulses  were - 1 ns  long, 
and the  detection system had a time response  of -300 ps, thus 
averaging  over any rapid changes in reflectivity.  Finally,  since 
the  experiments were done  for  only a single input pulse width, 
it was not possible to distinguish  between the observed ap- 
parent bistable  reflectivity,  and  an  unstable  state  with  a  life- 
time  longer than  the  input pulse duration. 

In  an  attempt  to  obtain  theoretical  predictions  for Gaussian 
profile input beams, several authors have carried out steady- 
state  numerical  simulations  for  two-dimensional Gaussian 
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